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Introduction

I Opinion dynamics

evolution of opinions in a society of agents with time

I Homophily (here: bounded confidence)

agents influence only similar agents

I Social influence

influence makes agents more similar

Can we observe complex emergent behavior?
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Hegselmann-Krause bounded confidence model

I N agents
I each with opinions xi ∈ [0, 1]
I each with confidence εi, but for our study εi = ε
I neighbors are topological neighbors on a static network which are also similar in

opinion with |xi − xj | ≤ εi
I compromise with your neighbors xi(t+ 1) = 1

|N |
∑

j∈N xj(t)
I possible stationary states: consensus or fragmentation
I measure mean size of largest cluster 〈S〉 to detect consensus
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For which εi do we expect consensus?

Complete graph topology:

I ε & 0.2 always consensus (for large N) [1]

I larger ε typically leads faster to consensus

Sparse topology:

I Unanimity threshold worsens for sparse topologies (εc ∼ 0.2→ 0.5) [2]

I Does the ability to reach consensus also deteriorate?

I Are there differences between lattices and random networks?

[1] Hegselmann, Krause, 2002, [2] Fortunato, 2004
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The well known case: Mixed population
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I Sharp transition at εc = 0.1926(5)

I bifurcation patterns: regions with m opinions

Largest systems simulated to date,
enabled by efficient algorithm [3]

[3] Schawe, Hernández, 2020

Schawe, Fontaine, Hernández 4/9

https://dx.doi.org/10.1038/s41598-020-64691-0


Lattices: A Lower critical value

Square lattice with third nearest neighbors, mean degree 〈k〉 = 12
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Lattices: A Lower critical value

Square lattice with third nearest neighbors, mean degree 〈k〉 = 12
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I still a sharp transiton but at much lower εc = 0.0801(7)

I unanimity threshold increases to εu = 0.5

I bifurcations vanish (i.e., no polarized state)
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Random Networks: Bridges to consensus

Barabási Albert Graph with mean degree 〈k〉 = 10

0.0

0.2

0.4

0.6

0.8

1.0

0 0.1 0.2 0.3

〈S
〉

ε

N = 1024
N = 4096

N = 16384
N = 65536

I crossover to consensus shifts as a power law to εc = 0

I unanimity threshold stays at εu = 0.5

I bifurcations vanish, polarization is preserved

⇒ For a sufficiently large system, there will be consensus
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Random Networks: Bridges to consensus

How does this work?
t = 0
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How does this work?
t = 100
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Random Networks: Bridges to consensus

How does this work?
t = 1000
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Random Networks: Bridges to consensus

How does this work?
t = 9000
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Random Networks: Bridges to consensus

How does this work?
final configuration
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Random Networks: Bridges to consensus

How does this work?

I synchronous updates enable long lived
bridges

I over many iterations they pull the clusters
together

I bridges are rare configurations, but one can
be enough

I larger systems have higher probability to
contain one

xi
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What about the Deffuant model?

It is the second famous bounded confidence model.

I sequential pairwise update excludes the possibility for bridges
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Conclusions

I Sparse networks foster consensus at the cost of long convergence times

I mixed population, lattices and random networks show three otherwise
fundamentally different behaviors

I find more details in Phys. Rev. Research 3, 023208 (2021) (arxiv:2102.10910v2)

I raw data at https://doi.org/10.5281/zenodo.4288672

Schawe, Fontaine, Hernández 9/9

https://doi.org/10.5281/zenodo.4288672


Appendix: Bonus Slides
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What is the problem when simulating the mixed population?

I At each time step each agent has to average over all neighbors ⇒ O(N2)

I Introducing new algorithm [3]
I It is only necessary to touch the neighbors, which are far fewer for low εi
I Converged clusters look for another agent like a single agent with high weight

I allows us to gather good statistics for systems two orders of magnitude larger
(N = 262144) than what is typically studied

[3] Schawe, Hernández, 2020, code at github.com/surt91/hk_tree
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Introducing a faster algorithm.

I Save all opinions in the system in a search tree (binary tree, B-tree, ...)
I to average the neighbors of agent i

I find the smallest opinion xj ≥ xi − εi in O(log(N))
I traverse the tree in order and stop averaging on encountering xj ≥ xi + εi
I if a value xj occurs more than once in the tree, assign it a weight
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