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We investigate, both analytically and with numerical simulations, a Monte Carlo dynamics at
zero temperature, where a random walker evolving in continuous space and discrete time seeks to
minimize its potential energy, by decreasing this quantity at each jump. The resulting dynamics is
universal in the sense that it does not depend on the underlying potential energy landscape, as long
as it admits a unique minimum; furthermore, the long time regime does not depend on the details of
the jump distribution, but only on its behaviour for small jumps. We work out the scaling properties
of this dynamics, as embodied by the walker probability density. Our analytical predictions are in
excellent agreement with direct Monte Carlo simulations.

I. INTRODUCTION

The steepest descent method is one of the oldest optimization schemes. Cauchy, with a rather minimal mention
in one of his papers, is credited for its formulation [1]. It amounts to searching for the minimum of a well behaved
function by following the steepest gradient “downhill”. A stochastic reformulation has been proposed [2], to alleviate
the computational cost of working in spaces with large dimensions: the gradient is then estimated over a restricted
set of directions, drawn randomly [3]. This technique is widely used in machine learning [4].

We are interested here in a minimal version of stochastic gradient descent, in a one-dimensional setting. A random
walker on the line, with position denoted by x, moves by random jumps; the move is accepted only if it leads to
the decrease of some objective function U(x), referred to as the potential. In this respect, the walker is greedy,
performing moves that always decrease U . We assume that U admits a single minimum: we are not interested in
finding this point (taken as x = 0 below), but rather in the dynamics of the walker upon approaching it. The specific
form of the potential is immaterial; it does not need to be symmmetric, as long as it has no local minima, beyond
the global maximum at x = 0. Such an algorithm can be viewed as the vanishing temperature limit of a standard
Metropolis sampling, a Monte-Carlo method where a Markov chain is constructed to sample the phase space according
to a predefined target distribution [5–7]. As simple as it is –the walker position distribution function is increasingly
peaked at x = 0– such a dynamics exhibits non trivial features, depending on the sampling chosen. A key role is
indeed played by the probability distribution of attempted jumps, and in particular, its behaviour for small jumps.
The present T = 0 problem differs from widespread approaches such as simulated annealing, where the temperature
ruling the evolution of a random walker is gradually decreased, in order to find minima in a given potential landscape.
Here, the motivation is different: the location of the potential minimum is known, and we are interested in the
dynamics towards this target.

Starting from the Metropolis rule, we define in section II the dynamics, in discrete time n = 0, 1, . . .. The walker’s
density Pn(x) evolves at long time towards P∞(x) = δ(x), where δ denotes the Dirac distribution. Our goal is to
resolve the approach to this limiting form, that takes place in a self-similar way. We show indeed in section III that
Pn(x) admits a scaling form at long times, where the whole position and temporal information is encoded in a single
universal scaling function, independent of U(x) and the initial condition. Its generic properties are studied analytically.
A number of exact solutions, presented in section IV corroborate the general findings, and provide additional insights
into the long time dynamics. All predictions fare well compared to Monte Carlo simulations, where the original
dynamics is directly implemented.

II. THE MODEL

We consider a single particle moving on a line in the presence of an external confining potential U(x), having a
single minimum, and no local minima. In other words, U(x) should be a monotonically increasing function of |x|. At
time n, an attempted jump ηn is drawn from a distribution w(η) and the particle moves according to the Metropolis
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rules

xn =


xn−1 + ηn with prob. p = min

(
1, e−β∆U

)
where ∆U = U(xn−1 + ηn)− U(xn−1)

xn−1 with prob. 1− p ,
(1)

where β is for inverse temperature (kBT )−1. The position distribution Pn(x) evolves via the Master equation

Pn(x) =

∫ ∞
−∞

dx′ Pn−1(x′)w(x−x′) min
(

1, e−β (U(x)−U(x′))
)

+

[
1−

∫ ∞
−∞

dx′ w(x′ − x) min
(

1, e−β (U(x′)−U(x))
)]

Pn−1(x),

(2)
where the jump distribution w(η) is assumed to be symmetric: w(η) = w(−η). It is convenient to replace the ‘min’
function above by the following identity

min
(

1, e−β (U(x)−U(x′))
)

= θ (U(x′)− U(x)) + e−β (U(x)−U(x′)) θ (U(x)− U(x′)) (3)

where θ(z) is the Heaviside theta function: θ(z) = 1 if z > 0 and θ(z) = 0 if z < 0.
We now focus on the limit T = 0, i.e., β =∞ [8]. In this limit, (3) becomes

min
(

1, e−β (U(x)−U(x′))
)

= θ (U(x′)− U(x)) = θ (|x′| − |x|) (4)

where in arriving at the last equality we used the fact that the potential increases monotonically with |x| so that
U(x′) > U(x) implies |x′| > |x|. Thus, in this limit, the particle can jump only downhill, and all uphill moves are
forbidden. More precisely, if the particle is at x at step n, then in the next step it can jump only to the region
x′ ∈ [−|x|, |x|]. Any jump that takes it outside this region is forbidden at T = 0 (see Fig. 1). Thus the explicit
dependence of the position distribution Pn(x) on the form of the potential U(x) drops out in this T = 0 limit, that
can naturally be simulated by a Monte Carlo method, as described in Appendix A. However, even in this relatively
simple limit, the evolution of the position distribution remains rather nontrivial. With the simplification in (4), the
Master equation (2) reduces to a simpler form

Pn(x) =

∫ ∞
−∞

dx′ Pn−1(x′)w(x− x′) θ (|x′| − |x|) +

[
1−

∫ ∞
−∞

dx′ w(x′ − x) θ (|x| − |x′|)
]
Pn−1(x) . (5)

One can check that Eq. (5) satisfies the probability conservation∫ ∞
−∞

Pn(x) dx =

∫ ∞
−∞

Pn−1(x) dx . (6)

Since the particle moves only downhill, we expect that at long times, i.e., in the limit n→∞, the position distribution
should approach a delta function at the origin (irrespective of the initial condition)

lim
n→∞

Pn(x) = δ(x) . (7)

We are interested in computing how the position distribution relaxes to this steady state.
For the analytical work, it is convenient to start from a symmetric initial condition. This ensures that at all times

Pn(x) is also symmetric, Pn(x) = Pn(−x). In that case, we can just focus on x ≥ 0. This symmetry assumption will
be tested against numerical simulations, run in conditions of asymmetric initial conditions. It will be seen that the
dynamics gradually suppresses non-symmetrical features of the position distribution. An explicit solution in a specific
case will confirm this computational observation. Our Master equation (5) then reads (restricted to x ≥ 0)

Pn(x) =

∫ −x
−∞

dx′ Pn−1(x′)w(x− x′) +

∫ ∞
x

dx′ Pn−1(x′)w(x− x′) +

[
1−

∫ x

−x
dx′ w(x′ − x)

]
Pn−1(x) . (8)

In the first integral on the right hand side (r.h.s) we make the change of variable x′ → −x′ and use the symmetry
Pn(x) = Pn(−x) to get for all x ≥ 0

Pn(x)− Pn−1(x) =

∫ ∞
x

dx′ Pn−1(x′) [w(x+ x′) + w(x− x′)]−
[∫ x

−x
dx′ w(x′ − x)

]
Pn−1(x) . (9)
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FIG. 1. Possible moves of a particle at T = 0 in the potential U(x), that monotonically increases with |x|. Only downhill
stochastic moves are allowed (greedy motion). If at step n, the particle is at xn, then at the next step it can jump only into
the region [−xn, xn]. Any jump that takes the particle outside this interval is forbidden at T = 0.

III. SCALING ANALYSIS OF THE MASTER EQUATION: ASYMPTOTIC RESULTS

A. The scaling ansatz

The integral equation (9) is still hard to solve exactly for all n and for arbitrary symmetric jump distribution w(η).
However, in the large n limit, further simplifications occur. Indeed, for large n we make a scaling ansatz for Pn(x)
that should be verified a posteriori and also confirmed numerically. Our ansatz reads

Pn(x) = B nα F (B nα x) , (10)

where the exponent α > 0 and the scale factor B will be selected subsequently. In doing so, we seek to “resolve” the
structure of the asymptotic Dirac delta distribution, towards which the position distribution evolves. Since Pn(x) is
taken here symmetric around x = 0, the scaling function F (z) is symmetric: F (z) = F (−z). In addition, from the
normalization of Pn(x), the scaling function F (z) must satisfy the constraint∫ ∞

−∞
F (z) dz = 1 . (11)

The scaling form in (10) makes sense physically. It stipulates that the width of the distribution decreases for large time
n as ∼ n−α with α > 0, while the value at the peak increases as nα. Thus, as n increases, the position distribution
function Pn(x) gets more and more peaked near x = 0, and eventually approaches the delta function Pn(x) → δ(x)
as n→∞.

We substitute this scaling ansatz (10) in the Master equation (9) and evaluate the left hand side (l.h.s) and the
r.h.s. For large n, the l.h.s simplifies to

Pn(x)− Pn−1(x) ≈ ∂Pn(x)

∂n
≈ B αnα−1 [F (z) + z F ′(z)] , where z = B nα x . (12)

We now substitute the scaling ansatz (10) on the r.h.s of (9). After making the change of variable z′ = B nα x′ inside
the integrals on the r.h.s of (9), it reads

r.h.s ≈
∫ ∞
z

dz′ F (z′)

[
w

(
z + z′

B nα

)
+ w

(
z − z′
B nα

)]
−
(∫ z

−z
dz′ w

( |z′ − z|
B nα

))
F (z) . (13)

Since we assumed α > 0 (to be verified a posteriori), it follows that as n → ∞, the arguments of the function w in
(13) approach 0. Hence, the scaling behavior depends crucially on how the jump distribution function w(η) behaves
for small |η|. We consider the following natural class of power law behaviors near η = 0

w(η) ≈ Cp |η|p as η → 0 , (14)
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where Cp > 0 is a positive constant and p > −1 to ensure the normalization. Substituting this behavior on the r.h.s
in (13) and equating it to the l.h.s in (12) we get, to leading order for large n,

B αnα−1 [F (z) + z F ′(z)] =
Cp
Bp

n−αp
[∫ ∞

z

dz′ [(z + z′)p − (z′ − z)p] F (z′)−
(∫ z

−z
dz′ |z′ − z|p

)
F (z)

]
. (15)

Note that F ′(z) = dF (z)/dz. In order that both sides scale as the same power of n for large n, we must have the
exponent

α =
1

1 + p
. (16)

Furthermore, let us choose the scale factor B as

B = [Cp(1 + p)]
1/1+p

. (17)

With this choice of B, the scaling function F (z) now depends only on the single parameter p, hence we will denote it
by Fp(z). It then satisfies the integro-differential equation in z ≥ 0, obtained from (15)

Fp(z) + z F ′p(z) =

∫ ∞
z

dz′ [(z′ + z)p + (z′ − z)p] Fp(z′)−
(∫ z

0

dz′ [(z + z′)p + (z − z′)p]
)
Fp(z)

=

∫ ∞
z

dz′ [(z′ + z)p + (z′ − z)p] Fp(z′)−
(2z)1+p

1 + p
Fp(z) . (18)

To summarise, we justified a posteriori that the position distribution Pn(x) satisfies the scaling form

Pn(x) ≈ B n1/(1+p) Fp

(
B n1/(1+p) x

)
, where B = [Cp(1 + p)]

1/(1+p)
, (19)

and the scaling function Fp(z), indexed by p, is determined from the solution of the integro-differential equation (18).
Note that Fp(z) is symmetric in z and hence satisfies the normalization condition∫ ∞

0

Fp(z) dz =
1

2
. (20)

Thus the scaling function Fp(z) depends only on the index p, but otherwise is universal, i.e., independent of the details
of the jump distribution w(η). For general p > −1, it is hard to solve the integro-differential (18) exactly. However,
as we show below, one can derive the asymptotic behaviors of Fp(z) as z → ∞ and as z → 0 for general p > −1.
Later, we show that for the three special cases, p = 0, p = 1 and p = 2, it is possible to obtain exact solutions for the
full scaling function Fp(z).

B. Large z behavior of Fp(z)

For large z, the l.h.s of (18) is dominated by the second term zF ′p(z). In contrast, for large z, the first term on the
r.h.s of (18) goes to zero, while the second term dominates, as can be checked a posteriori. Hence, for large z, we get
z F ′p(z) ≈ −[(2z)p+1/(p+ 1)]Fp(z). Integrating, we obtain for large z and any p > −1

Fp(z) ∼ exp

[
− 2p+1

(1 + p)2
z1+p

]
. (21)

This result has a neat physical interpretation. In fact, expressing the scaled variable z = B n1/(p+1)x in terms of the
original distance variable x, one finds (up to power law prefactors)

Pn(x) ∼ Fp(z) ∼ exp

[
− Cp

1 + p
(2x)p+1 n

]
. (22)

Hence Pn(x) decays exponentially with increasing n for fixed x. This can be understood from a very simple Poisson
type of argument. Consider the particle to be at x at large time n such that B−1 n−1/(1+p) � |x| � 1. In this
regime |z| = B n1/(1+p)|x| � 1. From this position the particle attempts a jump. It succeeds if the jump takes it into
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x′ ∈ [−x, x], otherwise it is unsuccessful and the particle stays at x. Also, the influx of probability to x from higher
values of |x| is negligible in this regime. Hence, the probability to stay at x after step n is approximately

Pn(x) ∼ [1− paccept(x)]
n
, (23)

where the acceptance probability at x is given by

paccept(x) =

∫ x

−x
dx′w(x′ − x) =

∫ x

0

[w (x+ x′) + w (|x− x′|)] dx′. (24)

Since |x| � 1, the argument of w is small and we can expand in Taylor series. Keeping only the leading order term
for |x| � 1 and using (14), we obtain

paccept(x) ≈ Cp
(1 + p)

(2x)1+p . (25)

Substituting this result in (23), we recover, for large n, the result in (22).

C. Small z behavior of Fp(z)

Extraction of the small z behavior of Fp(z) from (18) is non trivial. We consider the r.h.s of (18) and start with
the small z behavior of the first term

∫∞
z
dz′ [(z′ + z)p + (z′ − z)p] Fp(z′). Consider the first integral and rewrite it

as

R1 =

∫ ∞
z

dz′ (z′ + z)p Fp(z
′) =

∫ ∞
2z

duup Fp(u− z) . (26)

We now expand Fp(u − z) in Taylor series for small z and keep terms up to O(z2). Furthermore, we rewrite the

integral
∫∞

2z
=
∫∞

0
−
∫ 2z

0
and then expand the second part also for small z. After some algebra, this gives for small z

R1 = b0 + b1 z + b2 z
2 − Fp(0)

1 + p
(2z)p+1 +O(zγ) , (27)

with

bk =
(−1)k

k!

∫ ∞
0

duup F (k)
p (u) , where F (k)

p (u) =
dF kp (u)

duk
. (28)

The exponent γ is given by

γ = min(3, p+ 2) . (29)

Repeating the same exercise with the second integral we get

R2 =

∫ ∞
z

dz′ (z′ − z)p Fp(z′) =

∫ ∞
0

duup Fp(u+ z)

= b0 + b1 z + b2 z
2 +O(z3) . (30)

Adding (27) and (30), and substituting on the r.h.s of Eq. (18), we get

Fp(z) + z F ′p(z) =
d

dz
[zFp(z)] = 2 b0 + 2 b2 z

2 − 2
Fp(0)

1 + p
(2z)p+1 +O(zγ) (31)

Integrating we get for small z

Fp(z) = 2 b0 +
2b2
3
z2 − 2p+2Fp(0)

(1 + p)(2 + p)
z1+p +O(zγ) . (32)

Thus, while the leading term is always 2 b0, the subleading term depends on the value of p. Let us distinguish between
three cases.
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• p > 1: In this case, the first two terms in the small z expansion of Fp(z) are

Fp(z)→ a0 + a2 z
2 (33)

where the two coefficients are given by

a0 = 2 b0 = 2

∫ ∞
0

duup Fp(u) (34)

a2 =
2b2
3

=
1

3

∫ ∞
0

duup F ′′p (u) =
p(p− 1)

3

∫ ∞
0

duup−2 Fp(u) . (35)

Note that since a2 > 0, the function Fp(z) for small z actually increases as z increases. Finally as z →∞, Fp(z)
has to decay as in (21). Hence, the function Fp(z) is non-monotonic as a function of z for p > 1. If one considers
the symmetrized version of Fp(z), there is a local minimum (a hole) at z = 0 (see Fig. 4 for the case p = 2).

• −1 < p < 1: In this case, the first two terms are given by

Fp(z)→ a0 + ap+1 z
p+1 (36)

where the coefficients read

a0 = 2 b0 = 2

∫ ∞
0

duup Fp(u) (37)

ap+1 = − 2p+2Fp(0)

(1 + p)(2 + p)
. (38)

Thus in this case, since ap+1 < 0, the function Fp(z) decreases as z increases from 0, indicating that for
−1 < p < 1, the scaling function Fp(z) is likely to be a monotonically decreasing function of z, with a single
peak at z = 0, see Fig. 2 for p = 0.

• p = 1: Finally in the marginal case p = 1, where one has to merge the second and the third term together on
the r.h.s of (32), one gets

Fp(z)→ a0 + a2 z
2 (39)

where the coefficients are

a0 = 2 b0 = 2

∫ ∞
0

duuF1(u) (40)

a2 =
1

3

∫ ∞
0

duuF ′′1 (u)− 4

3
F1(0) = −F1(0) . (41)

As we will see later, in this case we can derive the full solution exactly, F1(z) = (1/
√
π) e−z

2

whose small z
expansion agrees with (40) and (41).

Let us then summarize the asymptotic behavior of Fp(z) for general p > −1. Using the symmetry of Fp(z) we get

Fp(z) ∼ exp

[
− 2p+1

(1 + p)2
|z|1+p

]
as |z| → ∞ . (42)

The small z behavior depends on the index p and the first two terms are given by

Fp(z)→



2
∫∞

0
duup Fp(u)−

[
2p+2 Fp(0)
(1+p)(2+p)

]
|z|p+1 for − 1 < p < 1

2
∫∞

0
duup F1(u)− [F1(0)] z2 for p = 1

2
∫∞

0
duup Fp(u) +

[
p(p−1)

3

∫∞
0
duup−2 Fp(u)

]
z2 for p > 1 .

(43)

There is thus a change of the small z behavior at p = 1, from a decreasing function of |z| for |p| < 1 to an increasing
one for p > 1. Indeed, with a probability density of jumps w(η) ∝ |η|p, p > 1 does penalize the occurrence of the
small jumps, required to move, as compared to the case p < 1. When p > 1, the reduced likelihood of small jumps
leads to a depletion of Fp(z) at z = 0. Beyond the asymptotic results derived here, we present in the next section
exact solutions for the three special cases p = 0, p = 1 and p = 2.
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IV. EXACT SCALING SOLUTIONS

A. Exact solution for p = 0

The case p = 0 includes most natural symmetric jump distributions such as

• Gaussian: w(η) = 1√
2π

e−η
2/2

• Double-exponential: w(η) = 1
2 e
−|η|, see also Appendix B.

• Uniform distribution: w(η) = 1
2 [θ(η + 1)− θ(η − 1)].

• Long-ranged distributions such as w(η) = 1/[π(1 + η2)], the Cauchy jump distribution.

In all these cases, w(η)→ const. as η → 0, implying p = 0. In this case, the integro-differential equation (18) reads

F0(z) + z F ′0(z) = 2

∫ ∞
z

dz′F0(z′)− 2 z F0(z) , (44)

and it must satisfy the normalization condition (20) together with the large z asymptotic behavior (42). The solution
of (44) turns out to be simple, as can be checked by direct substitution:

F0(z) = e−2 z , for z ≥ 0. (45)

The large and small z behaviors in (42) and (43) are consistent with the exact solution (45), as can be checked easily.
Thus for p = 0, our prediction is that Pn(x) is given by the scaling form

Pn(x) ≈ C0 nF0 (C0 nx) , with F0(z) = e−2|z| , (46)

where we used the symmetry F0(z) = F0(−z) and C0 = w(0). In Fig. 2, we compare our theoretical prediction for F0(z)
with the numerical simulations (see Appendix A for details on the numerical aspects), obtained for three different jump
distributions all with p = 0, namely the Gaussian, the double-exponential and the uniform jump distributions. We find
excellent agreement between the theoretical prediction and the simulations. The slight asymmetry observed between
positive and negative values of x is a fingerprint of the asymmetric initial conditions. Its progressive disappearance
gives an idea on the speed of convergence towards the scaling form. We come back to this question in Appendix B.

B. Exact solution for p = 1

An example of a jump distribution that belongs to the p = 1 class is the symmetric Weibull distribution (normalized
to unity)

w(η) = |η| e−η2 . (47)

In this case, setting p = 1 in (18) we get

F1(z) + z F ′1(z) = 2

∫ ∞
z

dz′ z′ F1(z′)− 2 z2 F1(z) , (48)

where the solution F1(z) should satisfy the normalization condition
∫∞

0
F1(z) dz = 1/2 and also the large z asymptotic

behavior in (42) with p = 1. Remarkably, (48) also admits a simple solution (as can be checked by direct verification)

F1(z) =
1√
π
e−z

2

, (49)

where the prefactor is chosen such that
∫∞

0
F1(z) dz = 1/2. It is immediate to check that this exact solution is

compatible with the large and small z behaviors in (42) and (43). Thus, for p = 1, our scaling prediction for the
position distribution Pn(x) reads

Pn(x) ≈
√

2C1 n
1/2 F1

(√
2C1 n

1/2 x
)

with F1(z) =
1√
π
e−z

2

, (50)

where we again used the symmetry F1(z) = F1(−z) and B =
√

2C1 for p = 1 from (19). In Fig. 3, we compare
the theoretical prediction for F1(z) in (50) with the numerically obtained F1(z) using the symmetric Weibull jump
distribution in (47), finding excellent agreement.



8

0.0

0.2

0.4

0.6

0.8

1.0

−2 −1 0 1 2

Gaussian(0, 1) jumps
C0 = 1/

√
2π

P
n
(x
)/
C

0
n

C0nx

n = 10
n = 100
n = 1000

0.0

0.2

0.4

0.6

0.8

1.0

−2 −1 0 1 2

Laplace(0, 1) jumps
C0 = 1/2

P
n
(x
)/
C

0
n

C0nx

n = 10
n = 100

n = 1000

0.0

0.2

0.4

0.6

0.8

1.0

−2 −1 0 1 2

uniform(0, 1) jumps
C0 = 1/2

P
n
(x
)/
C

0
n

C0nx

n = 10
n = 100

n = 1000

0.0

0.2

0.4

0.6

0.8

1.0

−2 −1 0 1 2

Cauchy(0, 1) jumps
C0 = 1/π

P
n
(x
)/
C

0
n

C0nx

n = 10
n = 100
n = 1000

FIG. 2. Case p = 0. Scaling function F0(z) obtained from the simulation data and the scaled Pn(x) as in (46), compared

with the theoretical prediction of the universal form F0(z) = e−2|z|. Four different jump distributions w have been used: the
Gaussian, the Laplace, the uniform and the Cauchy distributions, all having p = 0. While the measurements for small times
(n = 10) show deviations and an asymmetry due to the initial position chosen in the simulations (x0 = −1), the convergence
towards the form (46) is already very good for n = 1000 in all tested distributions. Measurements averaged over 107 independent
runs.
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FIG. 3. Case p = 1. The scaling function F1(z) obtained from the simulation data for the scaled Pn(x) as in (50), compared

with the theoretical prediction of the universal form F1(z) = (1/
√
π) e−z

2

. In the simulation, we used the symmetric Weibull
jump distribution with shape factor 2 shown in (47), thus C1 = 1. The agreement for n ≥ 100 is excellent. Measurements
obtained from 107 independent runs with n = 1000 jumps each. Here again, the slight x → −x asymmetry observed at early
times is a consequence of having chosen an asymmetric initial condition.
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C. Exact solution for p = 2

We now consider the case p = 2. This corresponds to symmetric jump distribution w(η) with the small η behavior

w(η)→ C2 η
2 as η → 0 . (51)

Then, the scaling theory for the position distribution (19) predicts that for large n

Pn(x) ≈ (3C2 n)1/3 F2

(
(3C2 n)1/3 x

)
, (52)

where the scaling function F2(z) = F2(−z) is symmetric and is normalized
∫∞

0
F2(z) dz = 1/2. The scaling function

F2(z), setting p = 2 in (18), satisfies the integro-differential equation (restricting only to z ≥ 0)

F2(z) + z F ′2(z) = 2z2

∫ ∞
z

dz′ F2(z′) + 2

∫ ∞
z

dz′ (z′)2 F2(z′)− 8z2

3
F2(z) , (53)

where F ′2(z) = dF2(z)/dz. The function F2(z) must approach a constant as z → 0 and should decay as F2(z) ∼
exp[−8z3/9] as z → ∞: this follows from the general asymptotics in (42) and (43). In addition, it must satisfy the
normalization condition (20).

To solve this integro-differential equation (53), the strategy would be first to reduce it to a differential equation.
To do this, let us define the cumulative scaling function

G2(z) =

∫ ∞
z

F2(z′) dz′ . (54)

We have G′2(z) = −F2(z) and G2(z) → 0 as z → ∞. Now consider the second term on the r.h.s of (53). With an
integration by parts, we can rewrite it as

−
∫ ∞
z

dz′(z′)2G′2(z) = z2G2(z) + 2

∫ ∞
z

z′G2(z′) dz′ . (55)

Thus, using F2(z) = −G′2(z), Eq. (53) reads

−
[
1 +

8z3

3

]
G′2(z)− z G′′2(z)− 4 z2G2(z) = 4

∫ ∞
z

z′G2(z′) dz′ . (56)

Differentiating once more with respect to z gives a differential equation for G2(z)

z G′′′2 (z) +

[
2 +

8z3

3

]
G′′2(z) + 12z2G′2(z) + 4zG2(z) = 0 . (57)

We divide by z, differentiate once more with respect to z and use G′2(z) = −F2(z) to finally obtain a third order
ordinary differential equation for F2(z)

F ′′′2 (z) +

[
2

z
+

8z2

3

]
F ′′2 (z) +

[
− 2

z2
+

52z

3

]
F ′2(z) + 16F2(z) = 0 . (58)

A symbolic calculation software [9] allows to solve this equation, and it gives the general solution as a linear combi-
nation of three independent functions

F2(z) = (A1) 1F1

(
1

2
,

1

3
,−8z3

9

)
+ (A2) z2

1F1

(
7

6
,

5

3
,−8z3

9

)
+ (A3)G2,2

2,2

(
− 1

3 ,
1
2

− 1
3 ,− 2

3

∣∣∣∣−8z3

9

)
, (59)

where 1F1(a, b, z) is the Kummer’s confluent hypergeometric function and Gp,qm,n denotes the Meijer’s G function. The
constants A1, A2 and A2 have to be determined from boundray conditions. First we note that the third function
Gp,qm,n diverges as 1/z as z → 0. Since this is not allowed (the scaling function F2(z) is normalizable and approaches
a constant as z → 0 from (43)). Hence we must have A3 = 0. Thus

F2(z) = A1

[
1F1

(
1

2
,

1

3
,−8z3

9

)
+B2 z

2
1F1

(
7

6
,

5

3
,−8z3

9

)]
, (60)
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FIG. 4. Case p = 2. Comparison between the numerically obtained scaling function F2(z) and the prediction of Eq. (65).
The scaling function is symmetric (F2(−z) = F2(z)), non-monotonic, with a pair of maxima at z = ±0.350322 . . . and a local
minimum at z = 0. The simulation data for Pn(x), scaled as in (10), are shown with the symbols; they have been obtained

with a normalized jump distribution of the symmetric Weibull type and shape factor 3, i.e., w(η) = 3
2
η2 e−|η|

3

, thus C2 = 3/2.

The agreement for n = 1000 is excellent. Measurements obtained from 107 independent runs with n = 1000 jumps each. Here
again, the asymmetry that is visible at n = 10 stems from our initial condition. Asymmetry is gradually washed out as time
proceeds.

where we define B2 = A2/A1. The overall global constant A1 can be fixed by the normalization condition in (20).
The only remaining unknown constant B2 has to be found from the boundary condition as z →∞, where we expect

from (42) with p = 2 that F2(z) ∼ e−8z3/9. So, the constant B2 has to be chosen such that F2(z) decays in this
fashion as z →∞.

To fix B2, we need to find the asymptotic behavior of 1F1(a, b,−x) when x approaches ∞ along the real line and
θ = a − b is a non-integer. It turns out that this asymptotic behavior is rather subtle and has been obtained only
rather recently [10]. For large x one gets

1F1(a, b,−x) =
x−a Γ(b)

Γ(b− a)

∞∑
k=0

(a)k (1 + a− b)k
k!xk

+ xa−b e−x [cos(π(a− b)) +O(1/x)] , (61)

where (a)k = Γ(a + k)/Γ(a) is the Pochamer symbol. Thus, generically, to leading order, it decays as a power law
∼ x−a as x→∞. Substituting this asymptotic behavior in (60) using x = 8z3/9, we get as z →∞

F2(z) ≈ A1

[
Γ(5/3)

Γ(1/2)

(
−8

9

)−7/6
(
B2 −

π

3Γ2(5/6)

(
2

3

)1/3
)
z−3/2

∞∑
k=0

9k Γ(1/2 + k)Γ(7/6 + k)

k! 8k z3k

]

+ A1
Γ(1/3) cos(π/6)√

π

(
8

9

)1/6

z1/2 e−8z3/9 . (62)

Since the boundary condition for large z predicts that F2(z) ∼ exp[−8z3/9] (see Eq. (42)), we must eliminate the
slow power law decay in (62). This can be done by choosing the constant B2 as

B2 =
π

3Γ2(5/6)

(
2

3

)1/3

. (63)

Finally, the global constant A1 is obtained from the normalization condition
∫∞

0
F2(z) dz = 1/2. This gives (upon

using Mathematica to do the integral)

A1 =

(
3

2

)1/3
Γ2(5/6)

π
. (64)
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FIG. 5. Numerically obtained asymptotic scaling functions Fp(z) vs the scaling variable z for p = 3, 4, 5. The Monte
Carlo simulations were run with a normalized jump distribution of the symmetric Weibull type and shape factor (p + 1), i.e.,

w(η) = p+1
2
ηp e−|η|

p+1

. Measurements are collected over 106 independent runs with n = 105 jumps for p = 3, 4 and n = 106

jumps for p = 5. The curve for p = 2 is Eq. (65) shown for comparison.

Thus, with the two unknown constants A1 and B2 fixed, we then have our exact scaling function valid for all z ≥ 0
(and symmetrically for z ≤ 0)

F2(z) =

(
3

2

)1/3
Γ2(5/6)

π
1F1

(
1

2
,

1

3
,−8z3

9

)
+
z2

3
1F1

(
7

6
,

5

3
,−8z3

9

)
. (65)

The function F2(z) has the following asymptotic behaviors

F2(z) ≈


(

3
2

)1/3 Γ2(5/6)
π + 1

3 z
2 +O(z3) as z → 0

b
√
z e−8z3/9 as z →∞

(66)

where the constant prefactor b is given by

b =

√
3

25/6 π3/2
Γ2(5/6) Γ(1/3) = 0.595887 . . . (67)

The large z asymptotic follows from the remaining nonzero term in (62) once B2 is fixed. One can check that the
small z behavior above is also completely in agreement with (43). A plot of this function F2(z) vs. z is given in Fig. 4.
In this Figure, we also compare our theoretical prediction with numerical simulations for p = 2, finding excellent
agreement. Interestingly, the function F2(z) is non-monotonic, and has a pair of maxima at z ≈ ±0.350322 . . . . The
reason behind this non monotonicity has been put forward below Eq. (43): p > 1 penalizes small jumps. Here, we
consequently expect the dynamics to proceed in back and forth motion, from the left of the minimum to the right, and
vice-versa for the subsequent successful jump. Such an oscillatory motion is fully compatible with the “two hump”
structure of the scaling function for p > 1. Yet, we stress that this oscillatory motion towards x = 0 is not specific
to cases with p > 1: the late-time probability that the position changes sign after an accepted move is smoothly
increasing when p increases. This probability is given by∫ 2x

x
ηp dη∫ 2x

0
ηp dη

= 1− 1

2p+1
. (68)

Starting from 0 when p→ −1+, it thus crosses 50% for p = 0, and exceeds 90% for for p > 2.33.
Finally, we show in Fig. 5 the evolution of the scaling function Fp with p, as obtained in Monte Carlo simulations.

The two hump structure resulting from increasing p is visible. It is a consequence of the reduced likelihood of
performing small jumps, when p increases, as discussed at the end of section III.

V. CONCLUDING REMARKS

We have studied a stochastic steepest-gradient descent on a line, in a potential landscape U(x). A random walker
proceeds in discrete time, with a succession of jumps (ηn at time n). The walker is greedy, in the sense that it only
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performs moves that decrease the energy U(x). The dynamics does not depend on U(x), and is driven to its minimum
at x = 0, irrespective of the value (or even the existence) of the gradient, as long as the minimum is non-degenerate
(no local minima). The long-time regime has been shown to be self-similar, with a scaling function Fp(z) that only
depends on the likelihood of small jump displacements, through the parameter p: Denoting the jump probability
distribution by w(η), we have w(η) ∝ ηp for η → 0 (and thus p = 0 when w(0) is finite). A Poisson-type of argument
reveals that the large z tail of the scaling function is of the form logFp(z) ∝ −z1+p, and it also provides the scaling

variable as z = xn1/(1+p). In other words, the root mean squared (r.m.s.) spread of the particle’s position shrinks
at large times n as n−1/(1+p). It is quite natural that large p values lead to a dynamical slow down, since they are
associated to a smaller likelihood of small jumps, which is detrimental to evolution. A byproduct of the analysis is
that redefining the clock from n to N , where N would count the number of accepted moves, the scaling variable
would become z = Nx, while the form of the scaling function Fp would of course be unaffected.
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FIG. 6. Monte Carlo results for initial conditions with a singularity at x = 0, here P0(x) = 1
2
x−1/2 for 0 < x < 1, and

P0(x) = 0 otherwise; the jumps are of the symmetric Weibull type (p = 2). The left panel shows the measured Pn(x) after n
jumps averaged over 107 realizations and scaled to demonstrate the slow convergence towards the scaling form F2(z) shown as
a black line. The right panel shows Pn(x) on a log-log scale, as a function of the unscaled variable x. Comparison of the two

panels shows that close to x = 0, Pn(x) is of the form x−1/2, before it crosses over to the asymptotic shape, further away from
x = 0.

We restricted the analysis to the search of the large-time symmetric scaling solution, which is universal in the sense
that it is independent of initial conditions. The excellent agreement with the Monte Carlo simulations, that start
from a non symmetric initial configuration, proves that asymmetric modes must decay faster than the symmetric
ones. In some situations, the decay is slow. Such is the case when the initial distribution P0(x) is of the type x−µ

for small x with 0 < µ < 1, thus singular near the origin. By construction, the smaller an x-value, the least probable
it will be affected by the dynamics. We then expect that in such a case, Pn(x) features the same singularity as
P0(x) close enough to x = 0. This is confirmed by Fig. 6, where µ = 1/2. The initial asymmetry of P0(x) (note
that P0(x) = 0 for x < 0), impinges on later times, while the singularity at x = 0 has a rather spectacular effect
on Pn(x). Yet, Fig. 6 gives credit to the statement that for n → ∞, the scaled Pn tends towards F2, as given in
Eq. (60). In addition, explicit exact calculations for the double exponential jump distribution, beyond scaling, show
1) the convergence towards the symmetric scaling form and 2) the faster decay of asymmetric contributions coming
from the initial conditions. Details are provided in Appendix B.

We did not discuss the cases where w(η) is depleted near η = 0, with a vanishing probability in some interval
[−η∗, η∗]: such a case would be non self-averaging, and lead to a dynamical arrest, whenever the walker arrives within
the depletion segment [−η∗, η∗]. One would need to average over may realizations sharing the same initial conditions
in order to obtain an interesting a smooth late-time dynamics, where Pn(x) → δ(x), thereby resolving the structure
of the δ peak. Conversely, in the case we have studied, and although we have averaged our Monte Carlo data over a
large number of samples to garner statistics, the dynamics is self-averaging in the sense that a single trajectory leads
to a well defined scaling function; statistics is increased by following the evolution on longer time scales.

In this paper, we focused on T = 0 where the steady state is trivial, but the late time relaxational dynamics is
self-similar and typical observables (such as the r.m.s displacement) decay as a power law in time n for large n.
This power law behavior is due to the vanishing acceptance probability of new moves at the minimum. In a recent
paper [11], we studied the finite temperature version of this model where the dynamics satisfies detailed balance. In
this case the steady state is of Gibbs-Boltzmann form and the relaxation of observables towards their steady state
value becomes exponential with the error due to incomplete convergence decaying as Λn (with Λ < 1). The relaxation
time τ = −1/ ln Λ has a rich behavior as a function of the jump amplitude a, achieving a minimum value at an
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optimal a∗. Surprisingly for a > a∗, the relaxation at finite temperature is governed by self-similar scaling solutions
very similar to the scaling ansatz established here for T = 0. The framework developed here may thus find applications
beyond the T = 0 limit.

Appendix A: Monte Carlo simulations

The zero temperature dynamics investigated here defines a Markov chain, that is naturally simulated with the
Monte Carlo technique [5–7]. In order to observe the relaxation of the particle distribution Pn(x) we directly simulate
m independent particles (here m = 106 or m = 107), all starting at x0 = −1 by iterating

xn =

{
xn−1 + ηn if |xn−1 + ηn| < |xn−1|
xn−1 otherwise,

, (A1)

which is a simplified but equivalent version of Eq. (1) using Eq. (4). The ηn are independent random numbers drawn
from the respective distributions w(η), which (except for the Gaussian for which we used an implementation of the
Ziggurat method [12]) can be generated using the inversion method [13]. For each value of n in which we are interested,
e.g., n = 10, 100, 1000, we initialize a histogram and update it with the position of the m particles, after iteration n.
We use the shape of the distribution we measured this way at different values of n to determine whether our Markov
chain is long enough to reach the predicted scaling form, which typically happens very fast for jump distributions
with low values of p and takes a longer time for jump distributions with larger values of p.

Appendix B: An exact solution for the double-exponential jump distribution

To find a case where the long time asymptotic properties of the probability distribution Pn(x) can be obtained
exactly, we use the p = 0 type jump distribution:

w(η) =
1

2
e−|η|. (B1)

It is convenient to separate Pn(x) into symmetric and anti-symmetric components:

Pn(x) = Sn(x) + Zn(x) (B2)

with Sn(x) = Sn(−x) and Zn(x) = −Zn(−x). Substituting this decomposition in the Master equation (5) and using
the symmetry of w(η), one finds that the associated Master equations for Sn and Zn separate. We first focus on the
symmetric component Sn(x). For x > 0, the corresponding Master equation reads:

Sn+1(x) = cosh(x)

∫ ∞
x

e−ySn(y)dy +R(x)Sn(x) (B3)

where we introduced a compact notation for the probability to reject an attempted move from x:

R(x) =

∫ ∞
−∞

dy w(y − x) θ (|y| − |x|) = e−x coshx. (B4)

This quantity ranges from 1 at small x (where most moves are rejected), to 1/2 at large x, where downhill moves only
are accepted.

Introducing the generating function:

Qs(x) =
∑
n≥0

snSn(x), (B5)

we find the equation:

cosh(x)

∫ ∞
x

e−yQs(y)dy + (e−x coshx)Qs(x) =
Qs(x)− S0(x)

s
. (B6)
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This integral equation can be reduced to a first order differential equation, that can be integrated explicitly:

Qs(x) =
S0(x)

1− se−x coshx
+ 2s(e2x + e4x)hs(x)−1− 1

2−s

∫ ∞
x

dy hs(y)−1+ 1
2−sS0(y), (B7)

where we introduced the notation:

hs(x) = e2x(2− s)− s. (B8)

With this expression, we can use the general technique of singularity analysis [14] to obtain exact results on the large
n behavior of Sn(x), scrutinizing the complex plane position of the singularities of the generating function Qs(x) as
function of the parameter s.

To make further progress, we assume S0(x) = δ(|x| − y)/2 (with y > 0). This choice is the symmetric part of
P0(x) = δ(x− y) and we find:

2Qs(x) =
δ(x− y)

1− se−y cosh y
+ 2s(e2x + e4x)hs(x)−1− 1

2−s hs(y)−1+ 1
2−s θ(y − x). (B9)

Singularities appear when hs(x) = 0 or hs(y) = 0. For x < y, the singularity in the complex s-plane that is closest to
the origin |s| = 0 is the solution of hs(x) = 0, and reads

s =
2

1 + e−2x
= R(x)−1. (B10)

This implies that up to sub-exponential factors:

Sn(x) ∼ R(x)n. (B11)

Particles cannot climb uphill in this model and R(x′) < R(x) for x′ > x > 0. It is thus not surprising that the decay
rate of Sn(x) is determined by the rejection probability R(x).
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FIG. 7. Comparison between the asymptotic behavior 2Sn(0) and numerical simulations for S0(x) = δ(|x| − y)/2, with y = 2
and y = 6. Symbols show numerical results and continuous black lines show Eq. (B13).

It is possible to obtain sub-exponential corrections for particular values of x. For example for x = 0, the singularity
with the smallest modulus is at s = 1. Expanding the generating function around this position, we find:

2Qs(0) ' 1

(1− s)2
− 1

1− s log
1

1− s −
1 + log(e2y − 1)/2

1− s + ... (B12)

This allows us to obtain the sub-exponential corrections up to the first term that depends on the initial position y:

2Sn(0) ' n− log n−
(
1 + γ − log 2 + log[e2y − 1]

)
+ ..., (B13)

where γ is the Euler-Mascheroni constant. This formula is in good agreement with numerical simulations which are
shown shown in Fig. (7) for two different initial positions y of the random walker.
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A similar asymptotic analysis for x� 1 gives:

2Sn(x) ' n1+xR(x)n + ..., (B14)

where we derived only the leading sub-exponential term. Setting x̃ = nx, we can get:

Sn(n−1x̃) ' n

2

(
1− |x̃|

n

)n
' n

2
e−|x̃|. (B15)

Using the result F0(z) = e−2z derived in section IV A for the present p = 0 situation, together with the fact that here,
C0 = B = 1/2, we recover the limiting scaling behaviour derived in section IV A: Pn(x) = nF0(nx/2)/2, see Eq. (46).

For the anti-symmetric component of the probability distribution Zn(x), the Master equation for x > 0 is:

Zn+1(x) = sinh(x)

∫ ∞
x

e−yZn(y)dy +R(x)Zn(x). (B16)

As previously, we introduce the generating function: Ks(x) =
∑
n≥0

Zn(x)sn, and obtain

Ks(x) =
Z0(x)

1− se−x coshx
+ 4sex sinhx hs(x)

1
−2+s

∫ ∞
x

e
2(1−s)y

2−s hs(y)−2+ 1
2−sZ0(y)dy. (B17)

Focusing on the choice P0(x) = δ(x − y), we set Z0(x) = [δ(x− y)− δ(x+ y)] /2. For 0 < x < y, the position of
the singularity with the smallest modulus lies at the same position as for the symmetric part: s = R(x)−1. It is
thus the sub-exponential factors that discriminate the decay rates of the symmetric and anti-symmetric components.
Expanding the generating function to first order around x = 0 near the pole at s = 1, we find:

Ks(x) ' x(coth y − 1)

1− s . (B18)

This gives the expected small x asymptotic behavior for Zn(x):

Zn(x) ' x(coth y − 1). (B19)

This confirms that the antisymmetric component is indeed negligible, in the large n limit, against its symmetric
counterpart: |Zn(x)| � Sn(x), for small enough |x|. This stems from the additional hs(x)−1 factor present in
Eq. (B7), as compared to Eq. (B17).
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