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Higher order interactions destroy phase transitions
in Deffuant opinion dynamics model
Hendrik Schawe 1✉ & Laura Hernández 1✉

Most opinion dynamics models are based on pairwise interactions. However in many real

situations, discussions take place within groups of people. Here, we define a higher order

Deffuant model by generalizing the original pairwise interaction model for bounded-

confidence opinion-dynamics to interactions involving a group of agents of size k. The

generalized model is naturally encoded in a hypergraph. We study this dynamics in different

hypergraph topologies, from random hypergraph ensembles, to spatially embedded hyper-

lattices. We show that including higher order interactions induces a drastic change in the

onset of consensus for random hypergraphs; instead of the sharp phase transition, char-

acteristic of the dyadic Deffuant model, the system undergoes a smooth size independent

crossover to consensus, as the confidence value increases. This phenomenon is absent from

regular hypergraphs, which conserve a phase transition.
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The formation and diffusion of opinion in societies have
largely been studied from the point of view of Physics,
modelling the society in terms of a dynamical system of

interacting agents, by the means of stylized agent-based models,
aimed at understanding the role played by different aspects of
social interaction in the observed patterns in real life. Different
models have been proposed which may be classified according to
the representation of the agents’ opinions (scalar or vector,
continuous or discrete variables), or by the structure of their
interactions (mixed population, or networked systems), or even
by the detailed aspects of the dynamics which are in generally
grounded on disciplinary knowledge issued from social sciences,
like for example, the Social Influence Theory1,2.

The most popular aspects of social interactions, widely con-
sidered by previous studies are homophily, agents interact pre-
ferably with similar agents, and social influence, agents which
interact become more similar. One influential class of opinion
dynamics models are bounded confidence models, which imple-
ment homophily by a threshold rule: only agents whose opinions
lie within a confidence range may interact. Two outstanding
models of this class are the Deffuant–Weisbuch (DW) model3

and the Hegselmann–Krause (HK) model4. Both model the opi-
nion of the N agents in the population as a continuous variable
xi∈ [0, 1], ∀ i= 1,N and their main difference is that while the
DW considers pairwise interactions and asynchronous updates,
in the HK model, at each step, all the agents synchronously
update their opinion by taking the average of each agent’s current
opinion and those of their neighbours.

All these models consider pairwise relations between agents
which can naturally be modelled by networks1. However, pairwise
interactions do not describe all possible ways of discussion in real
life, and the particularities of group discussion and decision
making are still a matter of discussion in Social Psychology5–7.
This necessity of going beyond pairwise interactions has been first
addressed by generalizing previous models to the case of group
interactions mainly in the form of a majority rule, as in the voter
model8 or in the form of an aggregation rule that averages the
opinion of the neighbours of the active agent, as in the
Hegselmann–Krause model4.

Recently, the interest in multi-agent interactions9 to model
group dynamics at a large scale did rise sharply and several stu-
dies were published in the context of opinion dynamics10–16,
(social) contagion17–19 and other dynamical processes20,21, which
modelled the topology of interactions by hypergraphs.

It has been shown that if the multi-agent interaction is non-
linear—higher order interaction (HOI)—the system cannot be
modelled by any inherently pairwise graph12. Regarding opinion
dynamics, multi-agent interactions need to be considered to
address problems where individuals discuss in groups, like pro-
fessional meetings or private instant messenger groups.

Here we study a generalization of the DW to the case where the
interactions involve a group of agents and not only a pair of them.
This naturally implies changing the network description into a
hypergraph, where each hyperedge represents an interacting
group of agents. Our results show that considering hyperedges of
size k= 3 is already enough to modify qualitatively the way
consensus is reached with respect to the outcomes of the pairwise
DW dynamics. This modification is enhanced with the intro-
duction of larger hyperedges to the extent that the phase transi-
tion from polarization to consensus is replaced by a smooth
crossover. We also show that, as for networks, the outcomes of
the dynamics strongly depend on whether the hypergraph is
regular or random and we explore the interplay of the dynamical
rules and the interaction structure, paying particular attention to
the finite-size effects that have been shown to be dominant in
bounded confidence models in networks22.

Results
The model. The original DW model is defined for a set of N
agents, each with a continuous opinion xi∈ [0, 1]. The agents can
interact pairwise, provided that the difference of their opinions
lies within a confidence interval given by an external parameter ε,
and they can also be restricted by an underlying network (e.g., a
lattice or a random graph). The asynchronous dynamics takes
place in discrete time and at every time step, a pair of neigh-
bouring agents i and j attempts to interact and update their
opinion according to

xiðt þ 1Þ ¼ ðxiðtÞ þ xjðtÞÞ=2; if jxi � xjj < ε

xiðtÞ; otherwise

�
ð1Þ

Note that this dynamics is a particular case of the original
model, where the amplitude of opinion change towards the mean
opinion is given by a parameter, μ. Here, this parameter is set to
its maximal value, such that both agents assume their average
opinion after one successful interaction. For homogeneous
confidences, this should result in a higher convergence speed to
the final state. This update rule means that either two neighbours
discuss and arrive at a compromise opinion or do not discuss at
all, depending on the confidence parameter ε.

To account for the fact that discussions are not exclusively
happening between two persons, but may involve a group of
agents, we need to replace graphs encoding pairwise relations,
with hypergraphs. A hypergraph H ¼ ðV ; EÞ is defined by a set of
nodes or vertices V representing the agents and a set of
hyperedges E, which is a subset of the powerset of V, i.e., can
contain any subset of V. This way a hyperedge e∈ E establishes a
relation between its members, which encodes the group
interaction. The number of nodes N= ∣V∣ is called the size of
the hypergraph or the system size. The degree di of a node i is the
number of hyperedges the node is a member of, and we call
connectivity of the hypergraph, c, the average of all the degrees. A
hypergraph is called uniform or k-uniform, if all hyperedges e∈ E
have the same size k= ∣e∣. For clarity, we refer to conventional
graphs as dyadic graphs or 2-uniform hypergraphs.

In this framework, we modify the dynamical rule such that at
each time step a random hyperedge e is selected and every
member i ∈ e is updated according to

xiðt þ 1Þ ¼ xe; if maxj2exjðtÞ �minj2exjðtÞ < ε

xiðtÞ; otherwise;

�
ð2Þ

where xe ¼ 1
jej∑j2exj is the average opinion of all members of the

hyperedge. So interaction only happens if all members are within
the confidence range of each other. This rule addresses the
situation where an individual holding a very different opinion
from the rest of the group, by blocking the discussion, prevents an
otherwise possible compromise to reach consensus.

For small confidence ranges ε this means that the probability of
a successful interaction for a hyperedge (provided that the
opinions of the members are random and independent, which is
the case for the initial conditions of our model) decays
exponentially in the size k of the hyperedge, and therefore, large
groups have a low probability to reach a compromise opinion.

It is worthwhile noticing that the group interaction proposed
here is different from the interaction between an agent and its
group of neighbours that rules the dynamics of the
Hegselmann–Krause (HK) model4. This becomes apparent when
considering the projection of an example hypergraph onto a
dyadic graph shown in Fig. 1.

In the HK model, each agent checks every neighbour
synchronously and updates its own opinion by taking into
account the opinion of all its neighbours whose opinion differs
from its own in less than the confidence, ε, regardless of the
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differences between the opinions of those neighbours among
themselves (which could be larger than the confidence). The
HOID model, on the other hand, updates one hyperedge at a
time. This means that in the example of Fig. 1, the state of vertex
3 might be updated three times (when updating hyperedges
green, violet and orange) provided that all the nodes of each
hyperedge have their opinions within the confidence range. As a
consequence, a dissenter can block the interaction of all other
agents in the hyperedge, a mechanism absent from the HK model.
Indeed, if the update rule is non-linear, like the threshold value
for the HOID, hypergraph interactions cannot be mapped to a
dyadic graph. Also, note that for a 2-uniform hypergraph this
model reduces directly to the well studied DW case.

Unless stated otherwise we perform simulations for 1000
independent realizations of the system for each of 300 equidistant
values of ε∈ [0, 0.6], i.e., a resolution in ε space of 0.002. For a
better visibility, we present the results as lines instead of symbols.
The statistical uncertainty is generally of the order of the width of
the line. The raw data of the final states consisting of the locations
and sizes of all clusters and convergence times are openly
available at23 for the k > 2 cases.

Note that the HOID on k-uniform hypergraphs reduces to the
DW model on the corresponding topology for k= 2, therefore a
look back at the DW helps to identify the patterns that are
directly related to the higher-order interactions. We include, for
comparison, the results of the dyadic DW model for each
hypergraph topology.

As explained before, we do not intend to explore the HOID
model in the mixed population, due to the high proportion of
blocked hyperedges, however, a careful study of the dyadic DW
model in the complete graph is useful to identify which observed
phenomena are already present in the DW model in the complete
graph, which is induced by the interplay between the dyadic DW
model and the underlying topology, and finally, which are
associated with the introduction of HOID. Such study is included
in Supplementary note 1, where we revisit the results of the DW
model for the complete network presented in ref. 22, including an
extensive finite-size study that goes well beyond the sizes
considered so far. The corresponding raw data is openly available
at ref. 24.

Random hypergraph ensembles
Homogeneous Erdős–Rényi hypergraphs. In this section, we
compare the behaviour of the HOID model on k-uniform ER-
hypergraphs, for different values of k. We are interested in rela-
tively sparse hypergraphs so unless stated otherwise, we consider
c= 10.

The first striking effect of the HOID model in the region of
total fragmentation observed at low ε values in Fig. 2, where the
normalized average size of the largest opinion cluster is hSi � 0,
and which grows with k. This phenomenon can be understood by
recalling that, for fixed low values of ε, the probability for the
agents connected by a hyperedge to interact shrinks exponentially
in the number of members of the hyperedge, k, since the k
random initial opinions must lie within a range of ε. So the
amount of blocked hyperedges grows with k and inhibits the
dynamics of the system for low values of ε.

More interestingly the very existence of a phase transition, for
sparse hypergraphs, also depends on k. Figure 2 shows that for
k= 2, 3 (k= 4 behaving as a limit case) there is a transition from
polarization to consensus which gets sharper with increasing
system size, however for k > 4 the transition disappears letting
place to a crossover behaviour that becomes independent from the
system size. The variances at the inset of the panels confirm this:
while they are sharpening with system size for k ≤ 3 (in the manner
of a diverging susceptibility) they vanish with system size, for k ≥ 5.

However, this behaviour is a characteristic of sparse hyper-
graphs. For very large values of the average connectivity c, a sharp
transition reappears for the 6-uniform ER-hypergraphs as shown
in Fig. 3.

Fig. 2 Behaviour of the mean relative size of the largest cluster, for the
Erdős–Rényi hypergraph. Mean relative size of the largest cluster hSi as a
function of the confidence ε for the HOID model on k-uniform ER hypergraphs
with edge sizes k= 2 (a), k= 3 (b), k=4 (c), k= 5 (d), k= 6 (e), and an
expected mean degree of c= 10 for different system sizes (N), each. The insets
show the variance Var(S), which is sharpening for k≤ 3 and vanishing for k≥ 5,
supporting the change from a sharp transition to a crossover.

Fig. 1 Graphs and hypergraphs. Example of a hypergraph (a) and its
projection to a dyadic graph (b). Coloured areas represent different
hyperedges. In the hypergraph, the degree of node 4 is d4= 1, since it is the
only member of one hyperedge, the degree of node 2 is d2= 3 since it is a
member of three hyperedges.
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Here we can observe once again, the importance of the size effects
in the study of bounded confidence models, which require extensive
simulations in order to reveal important qualitative aspects of their
behaviour, as seen in refs. 22,25. Note that the curves for N= 256, 512
look very similar to the bottom panels of Fig. 2 even at the very high
connectivity of c= 150, it is necessary to go to larger sizes to observe
the qualitatively different behaviour.

Finally, as consensus is setting in with increasing ε, an
extremely shallow minimum appears in the hSi curves, in the
cases k= 2, 3, for ε≳ εc. This effect is neither related to the HOI,
nor to the networked structure, but is a consequence of the
asynchronous DW dynamics and is present in the DW model in
the mixed population (see Supplementary note 1). For larger k
this shallow valley is replaced by an almost perfectly linear
increase in hSi, before the onset of unanimity, for ε= 0.5. This
behaviour results from the interplay of the DW dynamics and the
hypergraph and is absent from DW on networks. A heuristic
argument allows us to explain this behaviour: at these relatively
high values of the confidence the majority of agents have
converged to the consensus opinion and those who have not, are
blocked by at least one blocking agent in all the hyperedges to
which they belong (notice that the other agents in the hyperedges
could have already converged). Since each agent is part, on
average, of c= 10 hyperedges, it is probable that the agents who
have not converged are themselves the blocking ones. This means
that their opinion differs in at least ε from the consensus opinion,
where most of their neighbours are. Assuming that those blocking
agents did not allow their edges to interact (or just a few times)
they are still very close to their uniformly distributed initial
opinion, and therefore their number will decrease linearly in ε,
which induces the linear growth in hSi.

We will see later that this phenomenon also exists for other
hypergraph topologies.

Homogeneous Barabási–Albert hypergraphs. It is known that
behaviour of the standard DW dynamics is qualitatively similar
on the ER, and the BA networks.26,27. Its generalization to HOI
introduces, nevertheless, some differences. While as for the ER
hypergraph, the behaviour of the HIOD in the BA hypergraph
differs more and more from the corresponding dyadic model as k
increases, this differentiation is stronger than for the ER case:
Fig. 4b shows that the polarization plateau completely disappears
already for k= 3. The size dependence of the order parameter hSi
and the variance, still suggest a phase transition, however, the
difference between the values of hSi before and after the transition
point is much smaller, than for the ER case.

In order to understand the mechanisms that lead to these
different behaviours of the order parameter, we examine the
trajectories for both systems near the corresponding critical
confidences εc. Figure 5 shows that while the trajectories for the
ER case evolve to consensus by joining two symmetric strands
(Fig. 5a), those of the BA case are asymmetric, with one
majoritarian strand that contains a much larger share of agents
(Fig. 5b).

As for the ER case, the sharp transition turns into a smooth
crossover for larger values of k.

Figure 6 illustrates the same phenomenon at the final state,
where one can observe that the cluster size distributions before
and after the transition are very different for ER and BA
hypergraphs. The almost isolated peak at S= 0.5 of the ER
hypergraph before the transition shows that polarization involves
two equally populated strands that join into a single one after the
transition (ε= 0.3). On the contrary for the BA hypergraph, the
distribution is broad, around S ≈ 0.4, before the transition.
Moreover, letting aside the very small clusters (S ≤ 0.1), it looks
quite symmetrical around the peak which still indicates polariza-
tion although with the existence of branches that could be
unequally populated. At the transition, this distribution presents a
sharper peak at S ≈ 0.7 showing that one of the two strands has
gathered more agents than the other.

A heuristic argument to explain these differences could be
related to the very high degree nodes (hubs) that are found, by
construction, in the BA hypergraph. As a hub belongs to many
hyperedges, it is likely to get unblocked in some of the hyperedges
it belongs to. As it interacts in one of those hyperedges, its
opinion evolves, allowing for the unblocking of the other
hyperedges it also belongs to, and therefore, attracting all the
nodes belonging to those hyperedges to a common opinion.
Other nodes, with less connectivity and not directly connected to
the hub, are less likely to grow a large cluster. In the ER, on the
other hand, there are no hubs, and it is possible to observe several

Fig. 3 Behaviour of the mean relative size of the largest cluster for the
Erdős–Rényi hypergraph with high connectivity c. Mean relative size of
the largest cluster hSi as a function of the confidence ε for the HOID model
on six-uniform ER hypergraphs with an expected mean degree of c= 150
for different system sizes.

Fig. 4 Behaviour of the mean relative size of the largest cluster for the
Barabasi–Albert hypergraph. Mean relative size of the largest cluster hSi
as a function of the confidence ε for the HOID model on k-uniform BA
hypergraph with k= 2 (a), k= 3 (b), k= 5 (c), and expected mean degree
of c= 10 for different system sizes. The insets show the variance Var(S),
which is sharpening for k≤ 3 and vanishing for k= 5; the same behaviour as
for the ER-hypergraph.
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nodes of relatively high connectivity distributed around the
network and not directly connected. They can grow clusters
independently around different opinions before joining into a
single strand at higher confidence values.

Heterogenoeus hypergraphs. As shown in the previous sections,
the behaviour of the system for given connectivity strongly
depends on the size of the hyperedges. Therefore it is interesting
to study what happens when the system contains hyperedges of
different sizes. As we have seen that large hyperedges are more
prone to remain blocked one could expect that the dynamics are
lead by the smaller, non-blocked ones. To further investigate this
point we study an ER-hypergraph that combines hyperedges of
k= 3 and k= 5 which have revealed different behaviours in the
uniform hypergraphs. We study two different ways of combining
these hyperedges of different sizes: (a) same average connectivity
for edges of different sizes and (b) same average number of
hyperedges of both kinds.

From Eq. (4) (see the “Methods” section) and, knowing that
the average number of hyperedges of size k is Mk ¼ 0:0ptNk

� �
pk,

one obtains the ratio of hyperedges of each kind M3= 5/3M5 for
the case (a), where we have fixed, c3= c5= 5 such that
c= c3+ c5= 10, for comparison with previous results. For case
(b), fixing again c= 10 one obtains the mean degrees of the
hyperedges of both sizes as c3= 30/8 and c5= 50/8, which are on
the order of the sparse hypergraphs previously considered.

Figure 7 shows that in case (a) the shape of the curve is a
slightly smoothed version of the 3-uniform case without a hint for
fundamentally new behaviour, indicating that the k= 3 hyper-
edges dominate the behaviour. This is not surprising as they are
more numerous and less susceptible to being blocked. On the
other hand, when the system contains the same number of
hyperedges of both kinds, shown in Fig. 7b, one does not observe
the predominance of the k= 3 behaviour, instead, the curves look
similar to those of the ’intermediate’ 4-uniform case. The same
qualitative behaviour is observed when mixing dyadic edges with
k= 4 hyperedges, both randomly distributed.

We, therefore, conjecture that when the average number of
hyperedges of different sizes is the same, non-uniform hyper-
graphs do not behave too differently from the uniform

hypergraphs with k in the same range, with a behaviour that
‘interpolates’ between the two considered uniform cases. In
particular, we do not observe as could have been expected, the
smaller k dominating the behaviour in this case, in spite of the
property of smaller hyperedges to be much less susceptible to
blocking. This is an interesting finding because it gives a hint of
the behaviour of heterogeneous hypergraphs: hyperedges of size k
may dominate the behaviour when they are many more than the
others, however when the average number of hyperedges is
similar for all sizes, the expected behaviour would be similar to a
uniform hypergraph with an intermediate value of k.

Regular, spatial hypergraphs. We present here the results for the
HOID model on hypergraphs built in such a way that they keep
the regularities and spatial symmetries of a square lattice, with
hyperedges including first, second and third nearest neighbours.
In Fig. 8 the results on hypergraphs with hyperedges of sizes k= 3
(panel (b)) and k= 5 (panel (c)) are compared with the corre-
sponding dyadic DW model in the square lattice with only
nearest neighbours (panel (a)) and with third nearest neighbours
(panel (c)). Notice that the three cases have similar connectivity,
c ≈ 12, 15, which is also of the order of the sparse random
hypergraphs studied in the section “Random hypergraph
ensembles”

Figure 8 shows that the behaviour of regular hypergraphs is
completely different from the random case: no polarization is
observed for both k values, and there is a sharp transition from
complete fragmentation to consensus, that seems continuous
(panels (b) and (c)). Moreover, unlike for random hypergraphs,
no crossover to a smooth size independent behaviour for k= 5
is found.

It should be noticed that, while a longer reach of the
interactions in a dyadic lattice favours consensus, lowering the
value of εc (panel (d)), it does not for hypergraphs, because

Fig. 6 Comparison of cluster size distribution for hypergraphs of different
topology. Cluster size distribution of systems of size N= 65,536, below
and above the corresponding critical confidence value, εc. a, b ER 3-uniform
hypergraph, εc= 0.277(1). c, d BA 3-uniform hypergraph, εc= 0.257(1).

Fig. 5 Comparison of single sample trajectories near the transition, for
Erdős–Rényi and Barabasi–Albert hypergraphs. Examples of the trajectory
of a single realizations of the HOID model of size N= 16,384 and edge size
k= 3, close to their transition to consensus. a ER hypergraph with
connectivity c= 10. b BA hypergraph with c= 9. The horizontal axis is time
in units of sweeps, i.e., N attempted updates. The dark colours show regions
where agents are highly concentrated, light colour show regions with only
very few agents and white signifies the absence of any agents. The
colourmap is truncated at S= 0.2, to better visualize the small clusters,
therefore the darkest shade represents all values 0.2≤ S≤ 1.0.
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reaching further neighbours implies involving larger group sizes
which are easier to get blocked.

As for continuous phase transitions in thermodynamics, we
observe a scale free distribution of cluster sizes. This is the
indication of a divergent correlation length in the thermodynamic
limit (see Fig. 9). However, we were not able to scale the order
parameter, hSNiðεÞ ¼ eS ðε� εcÞNν

� �
with a unique exponent

above and below the transition.

Discussion
We generalized the Deffuant model to higher-order interactions,
where the discussions take place in small groups that cannot be
reduced to combinations of pairwise interactions. This general-
ization involves some hypothesis on how the interaction will take
place inside the group. While preparing this manuscript, we
noticed the work of Hickok et al. 16, published at the moment in a
preprint server, which reports a study of a different extension of
the DW model to include HOI. In that work, the authors assume
a discordance function that facilitates the interaction of large
groups. Here, on the contrary, we just follow the original DW
premises by considering that in order to interact, all members of
the group must hold opinions inside the confidence interval. This
working hypothesis describes the situation where some agents in
the group, by holding an opinion that is very far from the others’
may block an otherwise possible compromise. As a consequence,
it is more difficult to reach a common opinion as the group
becomes larger. Therefore, these works address two possible
alternative situations: while Hickok et al. 16 assume the existence
of nodes that could reduce discordance in the group, here we
focus on the role of a blocking minority.

At this point it should be noticed that we have generalized the
Deffuant model in the case where the interacting agents end up
having the same opinion after the interaction. In other words, the
parameter μ of the original model is set to its maximum value
μ= 1/2. This is a very common choice (see for e.g. ref. 16) for
computational reasons, because this parameter controls the speed
of convergence of the model3. However, care should be taken in

the case of a heterogeneous model, with the agents characterized
by different confidences, as it has been shown that, in this case the
characteristic time scales are different for different confidences
and modify the outcomes of the dynamics25.

The natural tool to model group interactions are hypergraphs.
We therefore perform large-scale simulations of this HOID model
in sparse hypergraphs with different hyperedge distributions. We
observe that the fact of introducing hyperedges completely
changes the dynamics with respect to the DW model in the
corresponding network topology. One reason for this is the
blocking effect of the hyperedges, which requires higher con-
fidences to overcome fragmentation (the domain of ε values
where hSiðεÞ ¼ 0 increases with k).

The most interesting result of the inclusion of hyperedges, is
that above a certain size of the groups the sharp transition to
consensus, well known from the original Deffuant model, changes
to a smooth crossover. In other words, when discussions take
place in groups, a small decrease in the confidence will not trigger
a sharp disruption of the society from consensus to polarization
but a slow decrease of the amount of individuals sharing the same
opinion. Since such crossovers are generally preferable to sharp
transitions for the stability of real societies, this fundamental
mechanism could be of further interest. The counterpart is that,
in order to unblock larger hyperedges, larger confidences are
required to leave the fragmentation region. When the hypergraph
becomes dense the phase transition still holds for hyperedges of
k= 6, but it is nevertheless less sharp than for smaller hyperedges.

Fig. 8 Behaviour of the mean relative size of the largest cluster for
hypergraphs on lattices. Mean relative size of the largest cluster hSi as a
function of the confidence ε for the HOID model on different lattice-like
topologies for different system sizes. Case a nearest-neighbour square
lattice with hyperedge size k= 2 and connectivity c= 4, cases b and c
spatial hypergraphs defined in the “Methods” section, with k= 3, c= 12 and
k= 5, c= 15, and case d square lattice with k= 2 and up to third nearest-
neighbour interactions, i.e., c= 12.

Fig. 7 Behaviour of the mean relative size of the largest cluster for
heterogeneous Erdős–Rényi hypergraph. Mean relative size of the largest
cluster hSi as a function of the confidence ε for the HOID model on
heterogeneous hyper-ER graphs with connectivity of c= 10= c3+ c5,
where the connectivity c3 is caused by k= 3 hyperedges and c5 by k= 5
hyperedges. In case (a) both types of hyperedges cause the same
connectivity c3= c5= 5. In case (b) there are on average equal numbers of
both hyperedges, i.e., c3= 30/8 and c5= 50/8.
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Furthermore, the introduced model shows a richer behaviour
on different hypergraph ensembles: while the dyadic Deffuant
model behaves qualitatively in the same way on ER or BA net-
works, its generalization to hypergraphs shows different agents’
opinion trajectories for ER and BA hypergraph.

Once again, here we see the importance of studying finite size
effects for those systems. As system size increases, new phe-
nomena, absent for the smaller ones, often appear. In other cases
the independence of the order parameter with the size allows to
distinguish a phase transition from a smooth crossover. We note
that many studies on opinion dynamics do not look at the size
dependence at all or study only fairly small sizes, such that similar
fundamental differences for other systems might have been
overlooked in the past.

We also show that if the hypergraph is not homogeneous, the
expected dominance of small hyperedges (due to the fact that
larger ones are more likely to be blocked) does not occur, unless
they are significantly majoritarian. If the average number of
hyperedges of different sizes is the same, the system behaves
similar to a uniform hypergraph case with an intermediate k
value. As a consequence, heterogeneous hypergraphs, which are
nearer to real societies, will mostly lead to a smooth crossover
rather than to a sharp transition.

Spatially structured hypergraphs, unlike random ones, seem to
show the same behaviour as dyadic lattices. However, increasing
the reach of the interaction in the hypergraphs shows the
opposite behaviour than doing so in lattices. While there are no
qualitative changes in hypergraphs, besides the expected increase
of εc, a higher reach in dyadic lattices promotes consensus. This is
a consequence of the competing effects on including further
neighbours in the hypergraph: on the one hand, it increases the
reach but on the other, by increasing the size of the group, it
enhances the possibility of blocking hyperedges.

In this work, we study the case where the groups that can
potentially interact do not change in time as they are constrained
by the underlying topology. It is therefore pertinent to question
whether the effects observed here would still hold if we release this
constraint by randomly choosing the potentially interacting group
among all the agents, at each time step. This setup may seem
unrealistic if we interpret each hyperedge as a social group.
However, a model that introduces a realistic modification of the
interacting groups with time would consist of granting the agents
the ability to leave groups and join another group. The departure
could be triggered by some measure of the frustration of not being

able to reach a consensus within a group. This way of unblocking
larger edges and allowing for some renewal of the groups, which
models the behaviour in real systems, is the subject of
forthcoming work.

Methods
As usual, we start the dynamics with initial opinions drawn from a uniform dis-
tribution U[0, 1]. The dynamics eventually leads the system, after a long transient,
to a final state28, where the opinions of the agents do not change anymore. As
convergence criterion, we require that after performing a sweep, i.e., N attempted
updates, we have:

∑
N

i¼0
jxiðtÞ � xiðt � 1Þj < 10�3 ð3Þ

This criterion, which has already been tested in different studies of the HK
model22,25,29 does become sharper for larger systems and is especially suited to
ensure that regions of very dense agents are static. Since our main observable is the
relative size of the largest cluster, S, i.e., the fraction of agents having the major-
itarian opinion within a tolerance of 10−3, we expect this criterion to lead to
accurate results while saving a lot of computations on converged systems.

Random hypergraph ensembles. Although the original DW model was also
studied on a complete graph, its generalization to HOI in this configuration is less
interesting. In fact, the interaction rule applied here induces a very low probability
for the large hyperedges to interact. As the complete hypergraph contains far more
large hyperedges than small ones, this will lead to blocking the evolution of the
system, making the complete hypergraph non-interesting. Instead, we focus on a
selection of ensembles of sparse hypergraphs, i.e., ensembles whose mean degree is
independent of the number of nodes. For the sake of comparison, we generalize the
HOID model to lattices and random graph ensembles, on which the DW26,27,30

and related models22 were studied before.

Erdős–Renyí. First, we consider a generalization of the Erdős–Renyí (ER) ensemble
to hypergraphs. The dyadic ER consists of graphs where every edge exists with
probability p. In the limit of large graphs, p= c/N, where c is the finite expected
degree the graphs are sparse.

To construct hyperedges in the same way, let us call pk, the probability that k
nodes taken at random, constitute a hyperedge. Therefore

ck ¼ pk
k
N

N

k

� �
ð4Þ

is the expected degree contributed by hyperedges of size k. The total expected
degree is simply c=∑kck.

Technically, we construct realizations of this ensemble by first determining how
many k-hyperedges should appear in the graph by drawing a binomially distributed
random number from B�� N

k

�
; pk

�
, since it is infeasible to iterate all

�
N
k

� ¼ OðNkÞ
possible hyperedges of size k and decide whether to include them or not with
probability pk. Since we are interested in sparse hypergraphs, we calculate pk from the
desired mean degree using the relation given by Eq. (4). For large values of N it
becomes impractical to draw the number of hyperedges from a binomial distribution.
Therefore, for an expected number of hyperedges Mk ¼

�
N
k

�
pk ¼ Nck=k > 103, we

switch to the Gaussian N ðMk;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mkð1� pkÞpk

p Þ, ensuring that the error introduced
by this approximation is negligible.

Barabási–Albert. Additionally, we introduce a scale-free k-uniform hypergraph,
in the sense that the degree distribution—the number of hyper-edges a node
belongs to—follows a power-law with an exponent 2 < γ ≤ 3. To construct a
realization we perform the preferential attachment procedure of the
Barabási–Albert (BA) graph ensemble31 with hyperedges, which is a special
case of the ensembles introduced in refs. 32,33. This ensemble offers the
parameter m determining the number of hyperedges introduced for each node,
which therefore determines the average degree c ≈mk. We start with a fully
connected core, i.e., all subsets of size k are hyperedges, of M ¼ maxðm� 1; kÞ
nodes. The remaining nodes are iteratively added. For each node m hyperedges
are introduced and their other k−1 neighbours are chosen as members with a
probability proportional to their current degree, avoiding identical hyperedges
and nodes appearing twice in the same hyperedge. This procedure leads to a
scale-free degree distribution P(d) ∝ d−γ with γ ¼ 2þ 1

k�1
32 and reduces to the

well-known BA case for k= 2.

Regular spatial hypergraphs. The DW model was also studied in the square
lattice as a very stylized way to introduce a neighbourhood embedded in real
space3,34.

There are different ways to introduce HOI in lattices. Here we propose two regular
structures based on the successive neighbours (first, second, third, etc. nearest

Fig. 9 Cluster size distribution for hypergraph on a lattice. Distribution of
the cluster sizes, S, for system of size N= 16,384, at confidence value
ε= 0.2, for the HOID model on a lattice with edge size k= 3 and
connectivity c= 12.
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neighbours) of the dyadic square lattice. The first case is a 3-uniform hypergraph,
where hyperedges connect up to the second nearest neighbours as shown on the left of
Fig. 10. This results in a mean degree of c= 12. The second case is a five-uniform
hypergraph, where hyperedges connect up to the third nearest-neighbour nodes as
shown on the right of Fig. 10. This results in a mean degree of c= 15.

Data availability
Data on cluster configurations for the Hyper Bounded Confidence model are available at
https://doi.org/10.5281/zenodo.5026816. Data on cluster configurations for the Deffuant
model are available at https://doi.org/10.5281/zenodo.4701047.

Code availability
The complete code is available at https://github.com/surt91/hk.
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Fig. 10 Example of hypergraphs on a lattice. Two possible hypergraph
configurations for lattices with different edge sizes and connectivity,
respectively. a k= 3, c= 12 and b k= 5, c= 15. For clarity, a `basis set' of
hyperedges is shown for the central node in the foreground (coloured
zones). Each node contributes such a basis set to the hypergraph. In the
background, with muted colours, all hyperedges are drawn.
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