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Replica symmetry breaking for Ulam’s problem
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We study increasing subsequences (ISs) for an ensemble of sequences given by a permutation of numbers
{1, 2, . . . , n}. We consider a Boltzmann ensemble at temperature T . Thus each IS appears with the corresponding
Boltzmann probability where the energy is the negative length −l of the IS. For T → 0, only ground states, i.e.,
the longest IS (LIS), contribute, also called Ulam’s problem. We introduce an algorithm which allows us to
directly sample ISs in perfect equilibrium in polynomial time, for any given sequence and any temperature.
Thus, we can study very large sizes. We obtain averages for the first and second moments of the number of ISs
as functions of n and confirm analytical predictions. Furthermore, we analyze for low temperature T the sampled
ISs by computing the distribution of overlaps and performing hierarchical cluster analyses. In the thermodynamic
limit n → ∞ the distribution of overlaps stays broad and the configuration landscape remains complex. Thus,
Ulam’s problem exhibits replica symmetry breaking (RSB). This means it constitutes a model with complex
equilibrium behavior which can be studied numerically exactly in a highly efficient way. This is in contrast to
other models, where RSB becomes exponentially irrelevant for the equilibrium behavior in the thermodynamic
limit, such as in a random exclusive-or satisfiability (XORSAT) problem, or models where RSB remains relevant,
such as spin glasses or NP-hard optimization problems, but where no fast exact algorithms are known.
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I. INTRODUCTION

The mathematician Stanisłav Ulam was also a well-known
pioneer in computer simulations. One of the problems he
studied numerically, back in the 1950s, was [1] the scal-
ing of the length L of the longest increasing subsequence
(LIS) [2] of random permutations of n numbers. Based
on the knowledge [3] that the average length increases at
least as the square root of n, he proposed that the average
length scales as 〈L〉 = c

√
n with c ≈ 1.7. In the mean-

time, 〈L〉 = 2
√

n for n → ∞ has been proven [4]. Also, the
distribution P(l ) of maximum lengths has been studied an-
alytically [5–7] and it was found [8] that the central part
is given by the Tracy-Widom distribution. This was con-
firmed numerically by large-deviation simulations [9], and
also considered for other sequence ensembles [10]. Further-
more, the expectation values of the number of increasing
subsequences (ISs) of a certain length [11] and of all ISs
[12] have been obtained analytically. The actual distribution
of the number of LISs was obtained numerically over a
large range of the support again by applying large-deviation
algorithms [13].

As a tool, the calculation of LIS finds also applica-
tions outside mathematics, such as in data analysis [14],
financial fraud detection [15], or sequence alignment in
bioinformatics [16].

In spite of these connections to many fields, to our
knowledge, the behavior of IS and LIS was studied so far
surprisingly only with respect to the length and to the expo-
nentially growing number of increasing subsequences. Thus,

the actual structure of the exponentially large IS configuration
space still needs to be studied.

Such questions about the phase-space organization lie at
the heart of the statistical mechanics of complex systems such
as glasses, spin glasses, and machine learning or optimization
problems [17–25]. One is interested whether the configuration
space is rather simple, as for a ferromagnet, often referred
to as replica symmetric, or whether it is complex with a
hierarchical organization of phase space, referred to as replica
symmetry breaking (RSB), as it appears for mean-field spin
glasses [26].

In most cases, analytical solutions cannot be obtained,
so one has to use computer simulations [27]. Unfortunately,
all standard models which exhibit a complex RSB-like be-
havior, such as spin glasses, are numerically very hard to
treat. Hence, only rather limited system sizes could be con-
sidered when performing equilibrium sampling, even when
using special parallel computers such as JANUS [28]. Note
that for combinatorial optimization problems such as the sat-
isfiability problem, in some cases efficient algorithms exist
[29]. But they allow only to find some solution, i.e., this
sampling is not controlled. Thus, these algorithms do not
allow us to sample the configuration space in equilibrium
which is necessary to study the configuration-space structure.
For this purpose one has to use Monte Carlo Markov-chain
sampling, which requires equilibration and is slow therefore.
Note, the exclusive-or satisfiability (XORSAT) problem can
be exactly sampled in polynomial time [30–32], but only when
the energy is strictly zero. The model exhibits one-step RSB,
but due to exponentially many clusters, it leads to a trivial
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equilibrium distribution of overlaps in the thermodynamic
limit. Still, RSB becomes visible in the nonequilibrium be-
havior of XORSAT. For directed polymers in random media,
a fast polynomial sampling is possible everywhere [33–35].
Here, a complex RSB equilibrium behavior was found [36],
but only for ensembles with correlations in the disorder.

Here, we introduce an algorithm which allows one to count
the number of ISs for any given length l as well as sampling
ISs exactly for any given distribution which depends only on
the IS length l , in particular for any given length the sampling
is uniform. Both the calculation of the numbers and the sam-
pling can be performed in polynomial time, which allows us to
treat large systems exactly. We study the sequence ensemble
of random permutations, which does not exhibit correlations
and is the classical and most-studied ensemble for IS and
LIS. Our results indicate that the structure of the configuration
space exhibits properties of replica symmetry breaking, i.e., a
broad distribution of overlaps and a hierarchical clustering of
configurations, even in the thermodynamic limit n → ∞.

Next, we present all necessary definitions and introduce the
algorithms. Then we show our results and finish by a summary
and discussion.

II. MODEL AND ALGORITHMS

Let σ = (σ1, σ2, . . . , σn) be a sequence of n distinct num-
bers. A subsequence λ = (σi1 , σi2 , . . . , σil ) of length l = l (λ)
fulfills 1 � i1 < i2 < · · · < il � n and is called increasing if
σi j < σi j+1 for all j = 1, . . . , l − 1. To calculate the longest
among all possible ISs, the patience sort algorithm [4] is a
popular choice which runs in polynomial time. Recently, an
extension was proposed [13], which allows one to calculate
the number of LISs. Here, we introduce a further extension
and variant of the algorithm, which enables one to count all
ISs and sample them efficiently and exactly for any desired
probability distribution which depends on the IS length l .

Let H be a precedence matrix, which encodes possible joint
occurrences of entries σi and σ j in an IS λ, i.e.,

Hi j =
{

1 if i < j and σi < σ j,

0 else. (1)

Note that the matrix H can be efficiently stored as a graph
with neighbor lists. To set up H , we run an extended variant
of patience sort, which gives also the length L of the LIS and
allows us to restrict the number of candidates i, j which have
to be checked whether one has to assign Hi j = 1. Still, this
requires O(n2) steps.

To count IS and LIS, we denote by � l
j the number of ISs

of length l which end at position j. Clearly, each single entry
of σ represents an IS of length l = 1, i.e., we have �1

i = 1
for i = 1, . . . , n. Now, ISs of length l > 1 can be constructed
by selecting a final entry σ j precedent by an IS of length
l − 1 where all entries are smaller than σ j and appear before
position j. For the number of ISs this turns into

� l
j =

∑
i< j

Hi j�
l−1
i for l = 2, . . . , L, (2)

which can be computed in a convenient way recursively, i.e.,
by dynamic programming in O(n2L). The total number of ISs

of length l is given by � l = ∑
j �

l
j , where we also include the

empty subsequence �0 = 1. The total number of ISs is given
by � = ∑L

l=0 � l .
To sample an IS for given length l , one starts by sam-

pling the final entry j which appears with probability � l
j/�

l .
Next, the preceding entry i is sampled among all possible
predecessors i < j, i.e., where Hi j = 1. Each possible entry
i is selected with probability � l−1

i /� l
j . This is continued

iteratively for length l − 2, l − 3, etc., always given the just
sampled entry, until length 0 is reached. This algorithm takes
O(n l ) steps.

The sampling can be easily extended to include any prob-
ability which depends on the length. Here, we take a physical
viewpoint by considering E = −l as energy within the canon-
ical ensemble at temperature T , i.e., by using probabilities
∼ exp(l/T ). Thus, for an IS λ we have the probability
given by

p(λ) = exp[l (λ)/T ]/Z, Z =
∑

l

� l exp(l/T ). (3)

This includes in particular all LISs for T → 0. Sampling an
IS now consists of first drawing a length l according the
probabilities � l exp(l/T )/Z , and then uniformly sampling an
IS of length l as explained before. Note that this approach is
exact and direct, i.e., for each run of the algorithm an indepen-
dently sampled configuration is returned. Our approach runs
in polynomial time, such that we can treat rather large systems
in perfect equilibrium.

III. RESULTS

We performed simulations [27] for ensembles of permu-
tations of n numbers in the range n = 128 to n = 8192. We
studied for all sizes 10 000 realizations of the disorder, i.e., in-
dependent permutations. For comparison, we also considered
in some cases the ordered sequence σ o = (1, 2, . . . , n).

We start by considering the number � of IS. The asymp-
totic behavior of the expectation value is analytically given
by [12]

E (�) = 1

2
√

πe
n−1/4 exp(2

√
n). (4)

In Fig. 1 we compare the numerical average 〈�〉 with the
analytical result and find very good agreement, even for rather
small system sizes. Note that the average is “annealed” in the
sense that is represents an exponentially growing quantity,
such that sequences with exceptionally large values of �

will dominate. This means we need a rather large number of
samples to observe agreement, as we do. This also indicates
the correctness of our approach. We have also evaluated the
second moment 〈�2〉 (not shown). Here, the agreement with
the analytical result [12] is fair, i.e., a bit lower, due to the even
stronger dominance of exponentially large but exponentially
rare sequences. To find a good agreement here, one would
have to obtain the distribution P(�) down to the tails. This
should be possible by using a large-deviation approach, as it
has been used to obtain the distribution of the number of LISs
[13], but lies outside the scope of the present study.
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FIG. 1. The number � of ISs as function of sequence length n,
for the analytical expectation value E (�) and the numerical average
〈�〉. The inset shows the ratio 〈�〉/E (�), the horizontal line is at
value 1.

Next, we analyze ISs sampled in equilibrium according to
Eq. (3) at a low temperature T = 0.2 for several sequence
lengths n. For independently sampled pairs λ(1), λ(2) of IS, we
calculate the similarity of the two ISs via the overlap q. Here,
considering the ISs as sets of the contained numbers, we use
the Jaccard index [37] as given by

q = |λ(1) ∩ λ(2)|
|λ(1) ∪ λ(2)| . (5)

This definition takes care of the fact that ISs can have varying
length. Also, since most entries of the sequence σ are not part
of any IS λ, using an overlap based on the Hamming distance
would give rise to all ISs being very similar to each other,
irrespective of the underlying configuration space.

The distributions P(q) of overlaps, where for each of the
10 000 realizations 3000 independent pairs of configurations
were sampled, are shown for T = 0.2 in Fig. 2 for three
sequence sizes n. Apparently the distribution is broad, even for
large systems, indicating a complex configuration landscape.

Although the results exhibit broad distributions of overlaps
for rather large system sizes, the relevant question is what
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FIG. 2. Distribution of overlaps at T = 0.2, for three system
sizes n. The inset shows a magnification of the region near q = 0.
The lines are guides to the eyes only.
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FIG. 3. Width σq(n) of P(q) at T = 0.2. The line shows a fit of
the data to a power law with offset σq(n) = σ∞

q + an−b. The inset
shows the extrapolated value σ∞

q = limn→∞ σq(n) as a function of
the temperature.

happens in the thermodynamic limit n → ∞. As it is standard
for numerical simulation, we perform a finite-size scaling
extrapolation. Therefore, to investigate whether this signature
of RSB is visible in the thermodynamic limit, we have eval-
uated the width σq of the distribution as function of system
size n. The result for T = 0.2 is shown in Fig. 3. We fitted
a power law σq(n) = σ∞

q + an−b and obtained the limiting
value σ∞

q = 0.073(10), which is significantly different from
zero and shows that the distribution remains broad in the
thermodynamic limit. This is in contrast to replica symmetric
systems, e.g., ferromagnets, where the distribution of overlaps
converges to one delta peak, or two peaks due to a trivial
symmetry.

We also analyzed the integrated weight Wq1,q2 =∫ q2

q1
P(d )dq in intervals [q1, q2]. While near q = 0 the

weight seems to decrease (see the inset of Fig. 2), in the
intervals [0.4,0.5], [0.5,0.6], and [0.6,0.7] we observe an
increase of the weights with increasing sequence length n,
which indicates a convergence to a nonzero value. This also
speaks in favor of a broad distribution P(q) for n → ∞. For
the random XORSAT problem, which exhibits one-step RSB,
the limiting equilibrium P(q) has zero width, i.e., appears
trivial, due to the exponentially growing number of clusters
[30–32].

When evaluating the limitingσ∞
q as function of T (see

the inset of Fig. 3), a small peak near T = 0.2 and a rather
smooth decrease beyond are visible. Thus, there is no sign of
a transition, where one would expect a power-law decrease
∼L−η, i.e., σ∞

q = 0 at and beyond the transition. Since we
measured up to T = 1, i.e., five times the temperature of the
peak, we expect that the crossoverlike behavior continues even
for larger temperatures. We also observe this behavior for the
average overlap (not shown here).

We also obtained the specific heat via the variance of the
length by calculating C = (〈l2〉 − 〈l〉2)/(nT 2). Interestingly,
the disorder-averaged C(T ), see Fig. 4, exhibits peaks near
T = 0.4 for all system sizes, but the peak height decreases
with growing system size n. Thus, this behavior provides also
no sign for a phase transition. Note that a nongrowing peak
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FIG. 4. The specific heat C as function of temperature T , for the
ordered sequence σ 0, where the line is the analytic result, and aver-
aged for the permutations. Shown are some system sizes n. The inset
shows the scaling of the value near the peak for the permutations
as function of system size, following a power law n−y, shown as a
straight line, with a fit value y = 0.451(5).

is obtained also when one considers just the single ordered
sequence σ o, where each number can independently be part
of an IS with probability p(T ) = e1/T /(e1/T + 1). Thus, σ o

represents n independent paramagnets in a field, where the
variance of the length is just the sum of the single-number
variances p(T )[1 − p(T )] and therefore C(T ) = p(T )/[1 −
p(T )]/T 2 is readily available [38]. This C(T ) exhibits also
a peak at the same temperature T ≈ 0.4. Thus, from the ener-
getic point of view no phase transition is visible. This may be
similar to spin glasses, where the transition to the RSB phase
is also not visible when studying the specific heat [19].

The configuration-space structure was further analyzed by
applying the agglomerative clustering approach of Ward [39].
The hierarchical structure obtained by the clustering can be
visualized by a tree, usually called dendrogram, where each
branching corresponds to a subspace of configurations (see
Fig. 5). The sequence of configurations as located in the leaves
defines a partial order. This order can be used to display the
matrix of the pairwise overlaps or distances where the order of

FIG. 5. Clustered overlap matrix and dendrogram obtained by
clustering 200 equilibrium ISs sampled at T = 0.2 for one random
permutation with length n = 8192.
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FIG. 6. Average distance-dendrogram correlation κ as function
of sequence length n, for random permutations at T = 0.2. The line
shows a result when fitting to a power law plus constant (see text).

the rows and columns is exactly given by the leaf order. The
resulting matrix for 200 samples IS (T = 0.2) of one random
permutation of length n = 8192 is displayed in Fig. 5. One
observes a hierarchical structure given by two major clusters,
visible by dark squares, i.e., similar configurations, which are
subdivided into subclusters, with relatively smaller similari-
ties on the off diagonals, respectively. This could indicate a
multilevel of RSB, also since the matrices look similar to ones
obtained for mean-field spin glasses [40]. On the contrary, for
random XORSAT, which is known to exhibit one-step RSB,
the matrices look trivial, i.e., plain gray, for n → ∞ due to
the exponentially diverging number of clusters [30–32].

The extent of the hierarchical structure can be made
quantitative by calculating the cophenetic correlationκ ≡ [d ·
dc]P − [d][dc]P, where d = 1 − q is the distance correspond-
ing to overlap value q. The cophenetic distance dc between
two states is measured on the dendrogram as the distance of
the two largest clusters that contain only one of the states,
respectively. [· · · ]P denotes the combined average over the
sampled IS and the disorder ensemble. Thus, this κ measures
the correlation between the original distance d of two states
and the distance dc imposed by the clustering, i.e., the degree
of hierarchical structure. In Fig. 6 κ is shown as function
of n. By fitting a power law κ (n) = κ∞ + an−b we obtained
κ∞ = 0.23(4). Thus, the IS landscape of permutations ex-
hibits also for n → ∞ a nested hierarchical structure, such
as for problems exhibiting RSB as mean-field spin glasses or
some hard combinatorial optimization problems [41].

IV. SUMMARY AND DISCUSSION

The original problem of Ulam is to find the longest in-
creasing subsequence for random permutations. With so-far
known algorithms it was possible to generate one LIS, but
in a statistically uncontrolled way. Here, we have introduced
an algorithm which allows for exact and direct sampling of
increasing subsequences in polynomial time. For the uncor-
related and most natural ensemble of permutations, we find
for the annealed mean and second moment of the number
of ISs a good agreement with the analytical calculations. By
using our algorithm, we numerically find a broad distribution
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of overlaps and a hierarchical structure of configuration space.
We show that this persists in the thermodynamic limit, thus the
model exhibits for the equilibrium behavior thermodynami-
cally relevant replica symmetry breaking. Simultaneously, this
model exhibits RSB that is thermodynamically relevant for
the equilibrium behavior and the model can be addressed by
a polynomial exact sampling algorithm. This is in contrast
to computationally hard problems such as mean-field spin
glasses and NP-hard optimization problems. Thus, Ulam’s
problem provides an ideal test bed to study other phenom-
ena or variants of interest. In particular one can address the
nonequilibrium behavior, the scaling of excitations, the cou-
pling of replicas, or an extended random model obtained by
assigning individual local lengths for the numbers. It could
also be of interest to consider ensembles with correlation or
structure, in the spirit of a recent work on directed polymers
in random media [36]. Furthermore, this study might motivate

or help to identify other models with complex RSB behavior
which can also be treated by polynomial algorithms. Finally,
as our results are numerical and rely on an extrapolation
for n → ∞, it would be of great interest, if our study moti-
vates analytical work on the configuration-space structure for
Ulam’s problem.

ACKNOWLEDGMENTS

We are grateful to A. Peter Young for critically reading
the manuscript. We thank Federico Ricci-Tersenghi and Fred
Hucht for useful discussions. The simulations were performed
at the the HPC cluster CARL, located at the University of
Oldenburg (Germany) and funded by the DFG through its
Major Research Instrumentation Program (INST 184/157-1
FUGG) and the Ministry of Science and Culture (MWK) of
the Lower Saxony State.

[1] S. M. Ulam, in Modern Mathematics for the Engineer: Second
Series, edited by E. Beckenbach and M. Hestenes, Dover Books
on Engineering Series (Dover, New York, 2013), Chap. 11,
pp. 261–281.

[2] D. Romik, The Surprising Mathematics of Longest Increasing
Subsequences (Cambridge University Press, New York, 2015).

[3] P. Erdös and G. Szekeres, Compos. Math. 2, 463 (1935).
[4] D. Aldous and P. Diaconis, Bull. Am. Math. Soc. 36, 413

(1999).
[5] T. Seppäläinen, Probab. Theory Relat. Fields 112, 221

(1998).
[6] B. F. Logan and L. A. Shepp, Adv. Math. 26, 206 (1977).
[7] J.-D. Deuschel and O. Zeitouni, Comb. Probab. Comput. 8, 247

(1999).
[8] J. Baik, P. Deift, and K. Johansson, J. Am. Math. Soc. 12, 1119

(1999).
[9] J. Börjes, H. Schawe, and A. K. Hartmann, Phys. Rev. E 99,

042104 (2019).
[10] J. R. G. Mendonça, H. Schawe, and A. K. Hartmann, Phys. Rev.

E 101, 032102 (2020).
[11] J. M. Hammersley, in Proceedings of the Sixth Berkeley Sym-

posium on Mathematical Statistics and Probability, Volume 1:
Theory of Statistics (University of California Press, Berkeley,
CA, 1972), pp. 345–394.

[12] V. Lifschitz and B. Pittel, J. Combin. Theory, Ser. A 31, 1
(1981).

[13] P. Krabbe, H. Schawe, and A. K. Hartmann, Phys. Rev. E 101,
062109 (2020).

[14] P. Gopalan, T. S. Jayram, R. Krauthgamer, and R. Kumar, in
Proceedings of the Eighteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’07 (Society for Industrial and
Applied Mathematics, Philadelphia, 2007), pp. 318–327.

[15] L. Bonomi and L. Xiong, Trans. Data Priv. 9, 73 (2016).
[16] H. Zhang, Bioinformatics 19, 1391 (2003).
[17] K. Binder and A. Young, Rev. Mod. Phys. 58, 801 (1986).
[18] M. Mézard, G. Parisi, and M. Virasoro, Spin Glass Theory and

Beyond (World Scientific, Singapore, 1987).
[19] K. H. Fischer and J. A. Hertz, Spin Glasses (Cambridge Univer-

sity Press, Cambridge, UK, 1991).

[20] Spin Glasses and Random Fields, edited by A. P. Young (World
Scientific, Singapore, 1998).

[21] H. Nishimori, Statistical Physics of Spin Glasses and Infor-
mation Processing: An Introduction (Oxford University Press,
Oxford, UK, 2001).

[22] A. K. Hartmann and M. Weigt, Phase Transitions in Combina-
torial Optimization Problems (Wiley-VCH, Weinheim, 2005).

[23] M. Mézard and A. Montanari, Information, Physics and Com-
putation (Oxford University Press, Oxford, UK, 2009).

[24] C. Moore and S. Mertens, The Nature of Computation (Oxford
University Press, Oxford, UK, 2011).

[25] N. Kawashima and H. Rieger, in Frustrated Spin Systems,
2nd ed., edited by H. T. Diep (World Scientific, Singapore,
2013), pp. 509–614.

[26] G. Parisi, Phys. Rev. Lett. 43, 1754 (1979).
[27] A. K. Hartmann, Big Practical Guide to Computer Simulations

(World Scientific, Singapore, 2015).
[28] F. Belletti, M. Cotallo, A. Cruz, L. A. Fernandez, A. Gordillo-

Guerrero, M. Guidetti, A. Maiorano, F. Mantovani, E. Marinari,
V. Martin-Mayor et al., Comput. Sci. Eng. 11, 48 (2009).

[29] M. Mézard, G. Parisi, and R. Zecchina, Science 297, 812
(2002).

[30] F. Ricci-Tersenghi, M. Weigt, and R. Zecchina, Phys. Rev. E 63,
026702 (2001).

[31] M. Mézard, F. Ricci-Tersenghi, and R. Zecchina, J. Stat. Phys.
111, 505 (2003).

[32] F. Ricci-Tersenghi, Science 330, 1639 (2010).
[33] D. A. Huse and C. L. Henley, Phys. Rev. Lett. 54, 2708 (1985).
[34] M. Kardar, Phys. Rev. Lett. 55, 2235 (1985).
[35] M. Kardar and Y.-C. Zhang, Phys. Rev. Lett. 58, 2087 (1987).
[36] A. K. Hartmann, Europhys. Lett. 137, 41002 (2022).
[37] P. Jaccard, New Phytol. 11, 37 (1912).
[38] As another check of our algorithm, we sampled ISs for also σ o

and obtained the same C(T ) curve.
[39] The clustering approach [42,43] operates on a set of M sampled

configurations by initializing a set of M clusters each containing
one configuration. One maintains pairwise distances between
all clusters, which are initially the distances d = 1 − q between
the configurations, obtained from the overlaps q. Then iter-

064208-5

https://doi.org/10.1090/S0273-0979-99-00796-X
https://doi.org/10.1007/s004400050188
https://doi.org/10.1016/0001-8708(77)90030-5
https://doi.org/10.1017/S0963548399003776
https://doi.org/10.1090/S0894-0347-99-00307-0
https://doi.org/10.1103/PhysRevE.99.042104
https://doi.org/10.1103/PhysRevE.101.032102
https://doi.org/10.1016/0097-3165(81)90049-2
https://doi.org/10.1103/PhysRevE.101.062109
https://doi.org/10.1093/bioinformatics/btg168
https://doi.org/10.1103/RevModPhys.58.801
https://doi.org/10.1103/PhysRevLett.43.1754
https://doi.org/10.1109/MCSE.2009.11
https://doi.org/10.1126/science.1073287
https://doi.org/10.1103/PhysRevE.63.026702
https://doi.org/10.1023/A:1022886412117
https://doi.org/10.1126/science.1189804
https://doi.org/10.1103/PhysRevLett.54.2708
https://doi.org/10.1103/PhysRevLett.55.2235
https://doi.org/10.1103/PhysRevLett.58.2087
https://doi.org/10.1209/0295-5075/ac5226
https://doi.org/10.1111/j.1469-8137.1912.tb05611.x


KRABBE, SCHAWE, AND HARTMANN PHYSICAL REVIEW B 107, 064208 (2023)

atively two clusters exhibiting the currently shortest distance
between them are selected and merged to one single cluster,
thereby reducing the cluster number by one. For this new
merged cluster, an updated distance to all other still existing
clusters have to be obtained. Here, the update is done with the
approach of Ward [42], which has been used previously for the
analysis of disordered systems [40,41,44] (for more details, see
there). The merging process is iterated until only one cluster is
left.

[40] H. G. Katzgraber and A. K. Hartmann, Phys. Rev. Lett. 102,
037207 (2009).

[41] W. Barthel and A. K. Hartmann, Phys. Rev. E 70, 066120
(2004).

[42] J. Ward, J. Am. Stat. Assoc. 58, 236 (1963).
[43] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data

(Prentice-Hall, Englewood Cliffs, NJ, 1988).
[44] A. Mann and A. K. Hartmann, Phys. Rev. E 82, 056702

(2010).

064208-6

https://doi.org/10.1103/PhysRevLett.102.037207
https://doi.org/10.1103/PhysRevE.70.066120
https://doi.org/10.1080/01621459.1963.10500845
https://doi.org/10.1103/PhysRevE.82.056702

